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A B S T R A C T

Lipedema is a chronic disease in females characterized by pathologic subcutaneous adipose tissue expansion and 
hitherto remains without druggable targets. In this observational study, we investigated the molecular hallmarks 
of lipedema using an unbiased multi-omics approach. We found adipokine dysregulation in lipedema patients 
participating in a cross-sectional clinical study (ClinicalTrial.gov, NCT02838277), pointing towards the adipo
cyte as a key player. Analyses of newly generated transcriptomic (SRA, PRJNA940039) and proteomic (Pro
teomeXchange, PXD058489) datasets of early- and late-stage lipedema samples revealed a local downregulation 
of factors involved in inflammation. Concomitantly, factors involved in cellular respiration, oxidative phos
phorylation, as well as in mitochondrial organization were upregulated. Measuring a cytokine and chemokine 
panel in the serum of non-menopausal women, we observed little systemic changes in inflammatory markers, but 
a trend towards increased VEGF. Metabolomic and lipidomic analyses highlighted altered circulating glutamic 
acid, glutathione, and sphingolipid levels, suggesting a broader dysregulation of metabolic and inflammatory 
processes. We subsequently benchmarked a set of models to accurately predict lipedema using serum factor 
measurements (sLPM). Our study of the molecular signature of lipedema thus provides not only potential targets 
for therapeutic intervention, but also candidate markers of disease development and progression.

1. Introduction

Lipedema is considered a chronic “loose connective tissue” disease 
[1] that predominantly affects women and manifests in pronounced 
changes in adipose tissue morphology and consistency in affected areas 
[2]. Cardinal symptoms include pain, swelling, and easy bruising, 
typically of the legs and arms [3]. Late-stage lipedema patients experi
ence severe reductions of their mobility and quality of life [1]. In the 
World Health Organization's 11th revision of the International 

Classification of Diseases (ICD-11), lipedema is referred to ‘Lipoedema' 
and assigned the code ‘EF02.2’. While prevalent, due to frequent 
misdiagnosis, the actual incidence rate is estimated to be up to ~10 % in 
women [4,5]. In the 2023 Lipedema Foundation's research roadmap, the 
“absence of validated and clear druggable targets” led to a call for action 
[6]. The only widely applied treatment option for lipedema is liposuc
tion [7,8], which remains very effective for plastic reconstruction but 
can worsen adipose tissue health in the long term [9,10]. The underlying 
disease causes have remained elusive because lipedema affects a 
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complex network of different cell and tissue types and presents as 
distinct stages [4,11]. Disease onset is positively associated with puberty 
and pregnancy, which suggests a major role of sex hormones like es
trogen [12] and cyclical changes in gut wall permeability [13,14]. 
Heritability has been suggested to be autosomal dominant with sex 
differences [15]. The progressive appearance of distinct symptoms 
during lipedema development has led the field to subdivide the disease 
into 3 stages [1,16]. At stage 1, patients exhibit a normal skin surface but 
an enlarged hypodermis. At stage 2, the patient's skin becomes uneven 
and larger mounds of adipose tissue grow as non-encapsulated masses. 
At stage 3, patients display deformations of the thighs caused by large 
extrusions of adipose tissue. While lymphedema can occur at any stage 
of lipedema, it is most frequently observed at stage 3. Allen and Hines 
proposed that edema formation is a consequence of poor resistance of 
accumulated adipose tissue against fluid pressure from capillaries into 
the interstitium [17].

Adipokines regulate a plethora of biological processes, including 
inflammation and fibrosis, and their secretion is shaped by age, BMI, and 
menopausal status and could thus play an important role in lipedema 
manifestation [18]. Adiponectin and leptin are two major adipokines 
whose levels correlate negatively and positively with BMI, respectively 
[19]. While adiponectin acts as an insulin-sensitizer and exerts anti- 
inflammatory and anti-fibrotic functions, leptin acts as a regulator of 
energy balance and exerts pro-inflammatory and pro-fibrotic functions 
[20].

In this study, we employed a multi-pronged approach of combined 
adipose tissue transcriptomics and proteomics as well as serum cytokine 
and chemokine measurements, metabolomics, and lipidomics to define 
molecular hallmarks of lipedema. We performed a comprehensive 
analysis of the gathered data using Metascape [21] to assess Pattern Gene 
Database (PaGenBase) tissue and cell type representation [22], Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment [23–26], and Transcriptional Regulatory Relation
ships Unraveled by Sentence-Based Text-Mining (TRRUST) transcription 
factor enrichment [27]. We furthermore took advantage of these newly 
acquired, expansive serum factor measurements datasets to train and 
benchmark multiple lipedema prediction models.

2. Results

2.1. Early lipedema is characterized by disrupted correlations between 
circulating adipokine levels and BMI

To characterize lipedema development, 72 female lipedema patients 
(stages 1–3) and 49 female control subjects were compared. As previ
ously published, all individuals consented in writing before enrollment 
in a study approved by the University of Arizona Human Research and 
Protection Program [28] (see STROBE diagram in Fig. 1A). The Inclusion 
Criteria for both groups at enrollment were: sex male or female (only 
females were analyzed); any race; age of 19–70 years; normal TSH 
levels; stable body weight in the past 3 months (allowed fluctuation of 
±4.5 kg). The Exclusion Criteria at enrollment were: pregnancy; HIV 
infection; scleroderma, keloid formation, or other skin conditions; 
cellulitis; bleeding diathesis; use of immunosuppressants or corticoste
roids; use of tobacco or marijuana; current weight gain medication (e.g. 
anti-psychotics); use of NSAIDs, aspirin, histamine (H) 1 blocker, H2 
blocker, tetracycline, or corticosteroids within the past 5 days; barium 
enema within the past 7 days; use of any antibiotic within the past 30 
days; blood donation within the past 56 days. A healthy control group 
was matched for age, sex, race, and BMI. Herein we describe the lipe
dema study part of the clinical study NCT02838277. As a consequence, 
individuals with other adipose tissue disorders (e.g. Dercum's disease or 
familial multiple lipomatosis) were excluded. Subsampling for down
stream analyses was required when tissue or serum sample amounts 
were limited.

Although debatable, in a first approximation, we assumed that 

lipedema develops successively from stage 1 to stage 2 and thereafter to 
stage 3, accompanied by increases in adipose tissue size. We used the 
following staging criteria: Stage 1, the skin is even and subcutaneous 
adipose tissue is enlarged with buildups around pelvis, buttocks, hips, 
and knees; Stage 2, the skin is uneven with indentations in adipose tissue 
and larger mounds that can be felt (sometimes referred to as lipomas); 
Stage 3, there are large extrusions of adipose tissue especially at the hips 
and around the knees. Lipedema patients at stage 1 and control subjects 
(Table 1) were comparable in their BMI (Fig. 1B), age (Fig. S1A), and 
menopausal status (Fig. 1C). In contrast, lipedema patients at stages 2 
and 3 exhibited a higher BMI and age. While menopausal individuals 
were, on average, older within all groups (Fig. S1B), differences in BMI 
between pre-menopausal and menopausal individuals were only 
observed for lipedema patients at stage 1 (Fig. S1C), which is important 
regarding adjustments for age in later analyses.

Lipedema development coincides with pronounced changes in adi
pose tissue anatomy. Serum adipokine concentrations, especially those 
of adiponectin (ADIPOQ) and leptin (LEP), can provide insights into 
adipose tissue health. We thus correlated serum ADIPOQ and LEP levels 
with BMI within each group (Fig. 1D-E). Circulating adiponectin levels 
have previously been found to correlate negatively with BMI [29,30]. 
Our control subjects' serum adiponectin levels fell short of being 
significantly correlated with BMI, but in lipedema patients at stage 1 the 
correlation was far weaker (Fig. 1D). Compared to control subjects, both 
p-value and Pearson correlation coefficient (ρ) changed strongly at 
lipedema stage 1 from 0.09 to 0.62 (p-value) and − 0.25 to 0.15 (ρ) 
(Fig. 1D). The circulating levels of high molecular weight adiponectin 
(HMW ADIPOQ), a more active form of the hormone, displayed similar 
trends (Fig. 1F). Overall, the mean ADIPOQ levels were comparable 
between groups, with the exception of lipedema stage 2 (Fig. S1F). 
Compared to ADIPOQ levels, LEP levels displayed a strong positive 
correlation with BMI in controls as well as stage 2 and 3 lipedema pa
tients (Fig. 1E, Fig. S1E). However, in stage 1 lipedema patients, a strong 
disruption of that correlation was observed (Fig. 1E, Fig. S1E).

The lipedema stage 2 and 3 groups contained an increased fraction of 
menopausal individuals compared to the lipedema stage 1 and control 
groups (Fig. 1C). Could menopause-associated differences in sex hor
mones mask part of the effect of lipedema on adipocyte function? To 
answer that question, we excluded menopausal individuals from our 
analysis of ADIPOQ and LEP levels. We dropped the stage 3 group 
altogether, because removing menopausal women represented a too 
large fraction of that group. Restricting our analyses to pre-menopausal 
women, the correlations of circulating ADIPOQ levels with BMI became 
clearer, while those of circulating LEP with BMI remained largely un
affected (Fig. S1D–E). As a consequence of the small sample size, we 
caution that future studies will be needed to confirm this dissociation of 
adipokine secretion from adipose tissue mass. However, our data sug
gests that adipocyte function could be most impacted at the onset of 
lipedema development, which may be covered up by exacerbated 
obesity at later stages.

2.2. The lipedema adipose tissue transcriptome exhibits patterns of 
increased oxidative phosphorylation and decreased leukocyte activation 
and respiratory burst

We next pursued an unbiased, discovery-driven analysis of the bio
logical processes underlying lipedema development. To this end, we 
performed RNA sequencing of abdominal and thigh subcutaneous adi
pose tissue (below a 5 mm punch biopsy) of a BMI- and age-matched 
subgroup of 14 lipedema patients (stages 1–3) and 7 control subjects 
without menopause (Fig. 2A, Table S1). We included lipedema patients 
at stages 1 to 3 because we hypothesized that the biological processes 
that are central to sustaining the disease are present at all stages. RNA 
sample or RNAseq data quality was too low for abdominal fat samples of 
UA0427 and UA0627, and for thigh fat samples of UA0036, UA0624. 
The total n-number of 21 can be explained by the inclusion 17 
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STROBE diagram: Selection of participants in the lipedema study from the clinical trial (NCT02838277)
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overlapping patients for thigh and abdominal locations and each two 
unique IDs for each location. Performing a principal component anal
ysis, we observed no clear clustering of samples based on adipose tissue 
depot (Fig. 2B). However, a diagonal line could be assumed to divide a 
more spread cluster of lipedema samples from a less spread of control 
samples with slight overlap at the edges (Fig. 2B). A separate approach 
of hierarchical clustering confirmed this trend (Fig. S2A).

The high variation in adipose tissue transcriptome analysis pre
vented us from finding any differentially expressed genes (DEGs) at the 
given number of patients when comparing lipedema and control samples 
at each location separately (Fig. 2C-D). Comparing all samples inde
pendent of location, we discovered a total of 296 DEGs (Fig. 2E, 
Table S2; False Discovery Rate (FDR) < 0.05). Next, we separately 
queried Metascape with the 144 upregulated, or the 152 downregulated 
DEGs to analyze our RNAseq data for tissue and cell type representation 
(PaGenBase), pathway enrichment (GO and KEGG), and transcription 
factor enrichment (TRRUST).

PaGenBase pattern analysis of this list of DEGs revealed adipose 
tissue of lipedema patients to be enriched only in expression patterns 
‘adipose tissue’ (Fig. 2F) and depleted of expression patterns including 
‘blood’, ‘spleen’, ‘bone marrow’, ‘lung’, and ‘thymus’ (Fig. 2G). GO 
pathway analysis of upregulated DEGs showed an enrichment for ‘aer
obic respiration’, ‘cellular respiration’, ‘oxidative phosphorylation’, 
‘energy derivation by oxidation of organic compounds’, ‘respiratory 
electron transport chain’, and ‘generation of precursor metabolites and 
energy’ (Fig. 2H, Table S3), providing a glimpse into potential causes of 
lipedema. KEGG pathways found analyzing upregulated DEGs included 
‘oxidative phosphorylation’, ‘diabetic cardiomyopathy’, ‘thermogene
sis’, ‘chemical carcinogenesis - reactive oxygen species’, ‘Parkinson's 
disease’, ‘prion disease’, ‘Huntington disease’, ‘Alzheimer's disease’, 
‘non-alcoholic fatty liver disease’, ‘amyotrophic lateral sclerosis’, and 
‘pathways of neurodegeneration - multiple diseases’ (Fig. 2I, Table S3). 
For downregulated DEGs, GO pathway analysis showed an enrichment 
for ‘leukocyte activation’, ‘endocytosis’, ‘cell activation’, ‘respiratory 
burst’, ‘phagocytosis’, ‘import into cell’, ‘lymphocyte activation’, ‘im
mune effector process’, and ‘innate immune response’ (Fig. 2J, Table S4) 
and KEGG pathway analysis an enrichment for ‘chemokine signaling 

pathway’, ‘Fc gamma R-mediated phagocytosis’, ‘Leishmaniasis’, ‘Yer
sinia infection’, ‘osteoclast differentiation’, ‘phagosome’, and ‘platelet 
activation’ (Fig. 2K, Table S4). Taken together, these pathway analyses 
suggest a local enhancement of oxidative phosphorylation and cellular 
respiration as well as suppression of inflammation and immune cell 
activation in lipedema adipose tissue.

We furthermore investigated enrichment of known transcription 
factors (TFs) of the DEGs using TRRUST. Only PPARG was found for the 
upregulated genes (Fig. 2L). For downregulated genes TFs, we found 
HBP1, SPI1, CEBPA, MYB, SP1, and ETS1 to be enriched (Fig. 2M).

Throughout the literature, the abdominal fat of lipedema patients is 
often considered to be ‘unaffected’ while their thigh fat is considered to 
be ‘affected’ by the disease. Because there is a great interest in finding 
differences between the fat residing in these different locations, we used 
a less rigorous statistical method to define, in a second step, all genes 
that have a one-way ANOVA p-value smaller than 0.05 as uncorrected 
differentially expressed genes (uDEGs) (Fig. S2B-G). This constitutes an 
analysis without correction for multiple testing, thus increasing the 
number of DEGs but risking a disproportionately high number of false 
positives. We found similar numbers of uDEGs specific for each location: 
814 for abdominal fat, 732 for thigh fat, and 248 overlapping (Fig. S2B). 
By applying logics to the up- and down-regulated uDEGs that are specific 
for each location, abdomen or thigh, and the uDEGs that are overlapping 
for both (Fig. S2C), we attempted to determine to what extend suppos
edly ‘unaffected’ differed from ‘affected’ lipedema adipose tissue. 
Enrichment refers to how statistically overrepresented a GO term within 
a set of genes is compared to the expected frequency of that term in the 
whole genome. A total of 37 GO pathways with a -log(p-value) > 5 were 
called from uDEGs in both abdominal and thigh fat (also called ‘over
lapping’), 54 GO pathways were specific for abdominal and not present 
in thigh fat, and 72 GO pathways were specific for thigh and not present 
in abdominal fat (Fig. S2D). Adipose tissue from both locations exhibited 
most significant changes in GO pathways including ‘oxidative phos
phorylation’ and ‘cellular respiration’ (Fig. S2E). This confirmed pre
vious findings with DEGs of combined depot analysis applying a stricter 
FDR < 0.05 filter. When removing all the overlapping pathways from 
analysis, abdominal fat distinctly exhibited changed GO pathways 

Fig. 1. Early lipedema is characterized by disrupted correlations between circulating adipokine levels and BMI. 
(A) STROBE diagram of the clinical study (NCT02838277) with specific focus on the selection of participants in the lipedema study. For serum based analyses 
(analysis 1), the following groups were analyzed: C, control subjects (n = 49); L1, lipedema stage 1 patients (n = 14); L2, lipedema stage 2 patients (n = 33); L3, 
lipedema stage 3 patients (n = 25). (B) Bar graph of body mass index (BMI). (C) Histogram of study subject count (y-axis = total count) and prevalence of menopause 
in percent (number inside box). (D-F) Dot plot and correlations of serum adipokines with BMI. Serum adiponectin with BMI (D), serum leptin with BMI (E), and serum 
high molecular weight (HMW) adiponectin with BMI (F). Data includes all women regardless of menopausal status. Pearson correlation coefficient (rho, ρ) and p- 
value (p) are given for each subgroup. Statistics: (B) Displayed as mean ± SEM; analyzed by one-way ANOVA (scipy.stats.f_oneway) with correction for multiple 
testing with FDR Benjamini-Hochberg method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). *, FDR < 0.05; **, FDR < 0.01; ***, FDR < 0.005; 
****, FDR < 0.001. (D-F) Pearson correlation (Python: scipy.stats.pearsonr).

Table 1 
Characteristics of the groups of participants analyzed in this study.

Group n Sex 
(M/F)

BMI 
(mean ± SEM)

BMI 
(p-value)

Age 
(mean ± SEM)

Age 
(p-value)

Race 
(n)

Control (C) 49 0/49 29.12 ± 0.84 ‘C vs L1’, p = 0.58 
‘C vs L2’, p = 0.0004 
‘C vs L3’, p < 0.00001

38.83 ± 1.92 ‘C vs L1’, p = 0.52 
‘C vs L2’, p = 0.0008 
‘C vs L3’, p = 0.00007

White, 39 
Asian, 5 
Black, 2 
American Indian or Alaska Native/Asian, 2 
American Indian or Alaska, 1

Lipedema stage 1 (L1) 14 0/14 30.07 ± 1.31 ‘C vs L1’, p = 0.58 
‘L1 vs L2’, p = 0.023 
‘L1 vs L3’, p = 0.0002

41.21 ± 3.10 ‘C vs L1’, p = 0.52 
‘L1 vs L2’, p = 0.041 
‘L1 vs L3’, p = 0.0084

White, 13 
Black, 1

Lipedema stage 2 (L2) 33 0/33 34.34 ± 1.23 ‘C vs L2’, p = 0.0004 
‘L1 vs L2’, p = 0.023 
‘L2 vs L3’, p = 0.0009

49.93 ± 2.28 ‘C vs L2’, p = 0.0008 
‘L1 vs L2’, p = 0.041 
‘L2 vs L3’, p = 0.215

White, 32 
American Indian or Alaskan Native, 1

Lipedema stage 3 (L3) 25 0/25 42.15 ± 1.92 ‘C vs L3’, p < 0.00001 
‘L1 vs L3’, p = 0.00017 
‘L2 vs L3’, p = 0.0009

52.76 ± 2.19 ‘C vs L3’, p = 0.00007 
‘L1 vs L3’, p = 0.008 
‘L2 vs L3’, p = 0.215

White, 23 
Asian, 1 
Black, 1

All participants in this study stem from a larger cross-sectional clinical study (NCT02838277).
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related to ‘mitochondrial translation’ and ‘mitochondrial respirasome 
assembly’ (Fig. S2F), while thigh fat exhibited changed GO pathways 
related to the ‘regulation of actin cytoskeleton organization’ (Fig. S2G). 
To summarize, some transcriptomic changes are unique for each loca
tion, but important GO pathways are altered in fat from both locations. 
This strongly suggests that both adipose tissue depots are affected by 
lipedema.

2.3. The lipedema adipose tissue proteome validates transcriptomic 
findings and furthermore suggests local dysfunctions in complement and 
coagulation cascades

To validate our RNAseq findings, we chose to perform quantitative 
proteomics comparing global protein expression changes between thigh 
subcutaneous adipose tissue biopsies (below a 5 mm punch biopsy) from 
BMI- and age-matched lipedema patients and control subjects (Table S5, 
Fig. 3A). Only 5 of the respective 28 individuals overlapped between 
transcriptomic and proteomics analyses (see Table S1 for Patient IDs). 
Our analysis identified a total of 4987 proteins across 108 fractions from 
12 samples. Unbiased Principal Component Analysis (PCA) segregated 
samples into two distinct groups (Fig. 3B). 171 differentially expressed 
proteins (DEPs) had an FDR < 0.05 (Table S6). Next, we separately 
queried Metascape with the 137 upregulated from the 34 downregulated 
DEPs to analyze our proteomics data for tissue and cell type represen
tation (PaGenBase), pathway enrichment (GO and KEGG), and tran
scription factor enrichment (TRRUST). The low number of DEPs was not 
enough for PaGenBase analysis. However, GO pathway analysis of 
upregulated DEPs demonstrated an enrichment for ‘mitochondrial or
ganization’, ‘mitochondrial membrane organization’, ‘membrane orga
nization’, ‘carboxylic acid metabolic process’, ‘protein localization to 
organelle’, ‘intracellular protein transport’, and ‘cellular respiration’ 
(Fig. 3D, Table S7). Subjecting the list of upregulated DEPs to KEGG 
pathway analysis revealed an enrichment for ‘fatty acid elongation’, 
‘nucleotide metabolism’, ‘purine metabolism’, ‘chemical carcinogenesis 
- reactive oxygen species’, ‘fatty acid metabolism’, ‘oxidative phos
phorylation’ (Fig. 3E, Table S7). Downregulated DEPs were associated 
with GO pathways including ‘humoral immune response mediated by 
circulating immunoglobulin’ and ‘complement activation’ (Fig. 3F, 
Table S8) as well as KEGG pathways including ‘complement and coag
ulation cascades’, and ‘Staphylococcus aureus infection’ (Fig. 3G, 
Table S8). Next, we plotted the -log10(p-value) of the most significant 
transcriptomic against the respective proteomic GO pathways (Fig. 3H- 
I). The identified upregulated GO terms ‘cellular respiration’ and 
‘oxidative phosphorylation’ as well as the downregulated ‘immune 
effector process’ and ‘leukocyte mediated immunity’ feature prominent 
in both datasets. The low number of DEPs did not allow for a proper 
TRRUST analysis.

2.4. Lipedema serum measurements indicate mostly unchanged systemic 
cytokine and chemokine levels, but a trend towards increased VEGFA 
levels, decreased glutamic acid levels, and increased oxidative stress

To assess whether the suppressed immune cell activation within 
adipose tissue is reflected or maybe even caused by changes in circu
lating cytokine and chemokine levels, we utilized a human cytokine and 
chemokine panel to analyze serum samples of pre-menopausal, BMI- and 

age-matched stage 1 lipedema patients (12 individuals) and control 
subjects (13 individuals) (Table S9). Of the 48 cytokines and chemokines 
contained in the panel, only three were significantly changed when a 
less rigorous one-way ANOVA without correction for multiple compar
isons was applied (Fig. 4A-B). Specifically, we observed a trend towards 
reduced IL5 and FLT3L levels, suggesting that B-cell and dendritic cell 
proliferation and growth and eosinophil activation could be inhibited 
(Fig. 4A) as well as a trend towards elevated VEGFA levels, suggesting 
that vascular dysregulation may be present (Fig. 4B). Most importantly, 
the systemic inflammatory state of lipedema patients appears 
unchanged.

Next, we measured circulating levels of 31 amino acids for stage 1–3 
lipedema patients (72 individuals) and control subjects (49 individuals) 
(Table 1, Table S1). In an Analysis of Covariance (ANCOVA) with ‘age’ 
and ‘BMI’ as covariates and ‘menopausal status’ as an independent 
variable, most amino acid levels were found to be comparable (Fig. 4C- 
N). Notably though, we observed a significant decrease in glutamic acid 
across all lipedema stages in comparison to control samples (Fig. 4H). 
When combining all lipedema stages, methionine sulfoxide was found to 
be significantly increased (Fig. 4O). Multivariate Analysis of Covariance 
(MANCOVA) with ‘condition’ (C, L1, L2 and L3) and ‘menopausal status’ 
as independent, categorical variables and ‘age’ and ‘BMI’ as continuous 
covariates revealed that the ‘condition’ (i.e. lipedema) significantly af
fects serum amino acid concentrations and that menopause does not 
cover up these changes (Table 2).

Since glutamic acid is required for the synthesis of glutathione 
(GSH), an important anti-oxidant factor, we also assessed the circulating 
levels of reduced and oxidized glutathione (GSSG) using mass spec
trometry (Fig. 4P-Q). Reduced glutamic acid levels did not correspond 
with reduced glutathione serum levels, but a trend towards a reduced 
GSH/GSSG ratio was apparent (Fig. 4R). MANCOVA with ‘condition’ (C, 
L1, L2 and L3) and ‘menopausal status’ as independent, categorical 
variables and ‘age’ and ‘BMI’ as continuous covariates showed that the 
‘condition’ (i.e. lipedema) and BMI have a significant, but slight effect 
on serum glutathione concentrations (Table 3).

2.5. Differences in ceramide and sphingolipid metabolism are sufficient to 
develop accurate serum-based lipedema prediction models

Adiponectin receptors contain a ceramidase domain and their acti
vation has been reported to decrease ceramide and increase sphingolipid 
levels. Sphingolipids can act as messenger molecules and have been 
implicated in cardiovascular diseases [31,32]. To gain further insights 
into lipedema's impact on metabolism, we measured 81 distinct circu
lating lipids by mass spectrometry, including 10 sphingomyelins, 5 
sphingoid bases, 7 lactosyl-ceramides, 7 hexosyl-ceramides, 7 dihydro- 
ceramides, 11 ceramides, and 34 sulfatides in serum samples from 72 
lipedema patients (stages 1–3) as well as 49 control subjects. Combining 
lipedema patients of stages 1–3 (Table S10), circulating ADIPOQ and 
LEP levels were higher compared to control subjects (Fig. 5A-D). We also 
performed ANCOVA with ‘BMI’, ‘age’, or ‘BMI & age’ as covariates. 
When adjusting age alone, significance for ADIPOQ was lost, whereas 
significance for LEP became more pronounced (Fig. 5B). Across all ad
justments, serum ceramide species were found to be persistently 
increased in abundance. As age and menopause are closely related 
variables, we also performed ANCOVA with ‘BMI’ as a covariate and 

Fig. 2. The lipedema adipose tissue transcriptome exhibits patterns of increased oxidative phosphorylation and decreased leukocyte activation and respiratory burst. 
The following groups were analyzed: C, control subjects (n = 6 (abdomen)-7 (thigh)); L, lipedema stage 1–3 patients (n = 12 (thigh)-13 (abdomen)). (A) Bar graph of 
body mass index (BMI) and age. (B) Principal Component Analysis (PCA) of transcriptome data from lipedema and control subcutaneous adipose tissue taken from 
the abdomen or thigh. (C-E) Volcano plots of differentially expressed genes (DEGs) in abdominal (C), thigh (D), and combined abdominal and thigh (E) adipose tissue 
depots (FPKM >5). Dotted line indicates FDR < 0.05. (F-G) PaGenBase tissue and cell type representation in upregulated and downregulated DEGs. (H-I) GO and 
KEGG pathway enrichment in upregulated DEGs. (J-K) GO and KEGG pathway enrichment in downregulated DEGs. (L-M) TRRUST transcription factor enrichment 
for upregulated and downregulated DEGs. Statistics: (A) Displayed as mean ± SEM; analyzed by one-way ANOVA (Python: scipy.stats.f_oneway). (B) PCA (Python: 
sklearn.decomposition.PCA). (C-E) Analyzed by two-sampled t-test (Python: scipy.stats.ttest_ind), multiple comparison correction with FDR Benjamini-Hochberg 
method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). (F-M) Analyzed using Metascape (version 3.5.20240901).
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‘menopausal status’ as an independent variable. This yielded results 
very similar to those obtained following adjustment for BMI & age 
(Fig. 5D). This suggests lipedema to have a potential impact on whole 
body ceramide and sphingolipid metabolism.

MANCOVA with ‘condition’ (C, L1, L2 and L3) and ‘menopausal 
status’ as independent, categorical variables and ‘age’ and ‘BMI’ as 
continuous covariates demonstrated that BMI has the strongest effect on 
serum ceramide and sphingolipid concentrations (Table 4). We also 
observed that the effect of the ‘condition’ (i.e. lipedema) is similar to 
that of age, with menopause covering up a substantial portion of the 
effect size as described by Hotelling-Lawley trace and Roy's greatest root 
statistical tests (Table 4).

The large number of analyzed samples and measured parameters 
(adipokines and sphingolipids) motivated us to benchmark three 
different approaches to find an accurate serum lipedema prediction 
model (sLPM) [33,34]. The following analyses included 121 study par
ticipants, irrespective of menopausal status. We used 81 serum lipid 
parameters as well as 3 adipokines (ADIPOQ, HMW ADIPOQ, and LEP) 
that we measured (Fig. 5G). We first normalized the data and then 
divided the samples randomly into training (80 %) and test (20 %) 
datasets (Python: sklearn.model_selection.train_test_split) [33,34]. The 
three types of prediction model classifiers were Random Forest Classifier 
(Python: sklearn.ensemble.RandomForestClassifier), Support Vector 
Machine (SVM) (Python: sklearn.svm.SVC), and ElasticNet (Python: 
sklearn.linear_model.ElasticNet) (Fig. 5E).

In the first step, we optimized each individual classifier to model the 
training dataset as good as possible and in a second step selected the 
classifier that maximized the F1-score in the test dataset to select a 
model that shows the lowest false positive rate (FPR) possible. Ran
domForestClassifier is an ensemble learning method that creates a 
multitude of decision trees during training but, importantly, corrects for 
their overfitting to the training dataset. For the test dataset, our F1 score- 
optimized RandomForest model had an F1-score of 76 % (configuration: 
n_estimator+10, random_state = 13, serum parameters scaled with 
MinMaxScaler (Python: sklearn.preprocessing)) (Fig. S4A). With 89 %, 
RandomForest had the best recall for control samples, which means that 
false positive grouping of control subjects as lipedema patients took 
place in 11 % of the predictions (Fig. 5E). SVM models are supervised 
max-margin models with associated learning algorithms and known to 
perform well with noisy data. Our F1-optimized SVM had an F1-score of 
80 % (configuration: C = 1, degree = 2, gamma = “auto”, kernel=”
linear”, probability = True, random_state = 42) (Fig. S4B). With the 
highest overall accuracy of 80 % (Fig. S4B) and ROC area under the 
curve of 0.86 (Fig. 5F), our SVM model was better at recalling lipedema 
patients (81 %), but weaker at recalling controls (78 %) than Random
Forest. ElasticNet is a regularized regression method that linearly 
combines the penalties of both the lasso and ridge methods. With an 
overall accuracy of 80 % in the test dataset, a ROC area under the curve 
of 0.87 (Fig. 5F), and F1-score of 80 %, our F1-optimized ElasticNet 
correctly recalled 88 % of lipedema patients yet only 67 % of control 
subjects (Fig. S4C).

One major problem is that we are missing an independent patient 
cohort, which could function as a validation dataset. A method 
commonly used to circumvent this problem is called cross-validation 
(CV), which splits the training dataset into k-folds. To this end, we 
chose a 5-fold (k = 5) cross validation (Python: sklearn.model_selection. 

cross_val_score), which means the model was trained using 4 folds and 
was validated on the last remaining fold. While cross-validation clearly 
identifies our ElasticNet as an unreliable prediction tool with a CV mean 
± SD value of 0.29 ± 0.12, our RandomForest and SVM performed much 
better with respective CV mean ± SD values of 0.69 ± 0.11 and 0.78 ±
0.05 (Fig. 5F).

One can calculate feature importance by permutating the feature 
columns (different serum parameters) and scoring how much of the 
predictive power is lost. According to the permutation importance test, 
RandomForest and SVM both have 31 features with a positive permu
tation coefficient, while ElasticNet mainly bases its prediction on 6 
serum parameters (Fig. 5G). To summarize, key metabolic serum 
signature could be identified for lipedema patients and two of three 
models could be benchmarked as good serum-based lipedema prediction 
tools.

3. Discussion

In this study, we provide the first comprehensive, unbiased, multi- 
omics-based systems biology approach to lipedema characterization 
and diagnosis. By integrating transcriptomic, proteomic, metabolomic, 
and lipidomic data from a patient cohort of unprecedented size, we 
define several molecular hallmarks of lipedema and contribute disease 
prediction models based on serum factor measurements.

A recent family-based study demonstrates genetic heterogeneity in 
lipedema development, arguing against a single causative exomic factor 
[35]. In line with this, no reliable genetic test exists for the diagnosis of 
lipedema. Previous lipedema prediction models were based on the 
quantification of pain levels [3] or circulating amino acid levels [36]. In 
the former case [3], it must be acknowledged that pain levels are sub
jective and can be influenced by unrelated physiological and psycho
logical processes. In the latter case [36], the utilized control groups may 
not have been properly matched, exacerbating the apparent predictive 
power of the model. We present 3 distinct serum factor measurement- 
based lipedema prediction models (sLPM) with good accuracies. We 
trained our models on all lipedema stages and irrespective of meno
pausal status to create the most widely applicable prediction tool. 
Placing the performance of our sLPM into perspective, serum 
measurement-based or clinical parameter-based prediction models have 
been tested across multiple diseases other than lipedema with similar 
F1-scores, control group recall values, and accuracies [37]. Further 
improvements and validation of the models using independent patient 
cohorts of multiple study centers would be important before it could be 
used in the clinics. However, the inaccuracies of the prediction tool 
could also be caused by lipedema being a disease category that combines 
distinct disease subgroups that differ at the molecular level.

Even on basic disease parameters, a consensus remains to be found 
for lipedema. Some investigators have reported adipocyte hypertrophy 
to be a hallmark of the disease [38], whereas others claim adipocyte 
hyperplasia to be more prevalent [39]. Adipocyte diameter appears to 
have a direct impact on adipokine secretion and is an important 
parameter when judging the healthiness of adipose tissue [40,41]. 
Adiponectin secretion increases with adipocyte hyperplasia, while 
adipocyte hypertrophy decreases adiponectin secretion and increases 
leptin secretion in turn [42]. Previous reports of elevated circulating 
adiponectin levels in lipedema may be explained by group differences in 

Fig. 3. The lipedema adipose tissue proteome validates transcriptomic findings and furthermore suggests local dysfunctions in complement and coagulation cas
cades. 
The following groups were analyzed: C, control subjects (n = 6); L, lipedema stage 1–3 patients (n = 6). (A) Bar graph of body mass index (BMI) and age. (B) Principal 
Component Analysis (PCA) of proteome data from lipedema and control subcutaneous adipose tissue taken from the thigh. (C) Volcano plots of differentially 
expressed proteins (DEPs) in the thigh adipose tissue depot. Dotted line indicates FDR < 0.05. (D-E) GO and KEGG pathway enrichment in upregulated DEPs. (F-G) 
GO and KEGG pathway enrichment in downregulated DEPs. (H-I) GO pathway enrichment cross-validation between transcriptomic and proteomic results. Analysis of 
DEGs (combined abdominal and thigh) and DEPs (only thigh). Statistics: (A) Displayed as mean ± SEM; analyzed by one-way ANOVA (Python: scipy.stats.f_oneway). 
(B) PCA (Python: sklearn.decomposition.PCA). (C) Analyzed by two-sampled t-test (Python: scipy.stats.ttest_ind), multiple comparison correction with FDR 
Benjamini-Hochberg method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). (D-I) Analyzed using Metascape (version 3.5.20240901).
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average adipocyte size and/or overall adipose tissue mass [43]. 
Appropriate matching of the study cohort is vital for meaningful ana
lyses. In general, we matched our study subjects by multiple parameters. 
The disruption of adipocyte function in lipedema was most apparent 
when correlating adiponectin and leptin levels with BMI separately for 
each lipedema stage and when taking the menopausal status into ac
count. In addition, we found that menopause covers up parts of 
lipedema-associated changes in serum ceramide and sphingolipid spe
cies. This hints at estrogen potentially playing a role in shaping the 
lipedema phenotype in the local adipose tissue environment, as well as 
on the systemic ceramide metabolism level. This is one of the first mo
lecular findings to support the long-hypothesized role of sex hormones 
in lipedema development [12].

Our observations of disrupted adipokine secretion indicate that ad
ipose tissue function is affected from early on in lipedema development 
at stage 1. Analyzed across all stages, lipedema patients displayed 
increased adiponectin in serum, which coincided with distinct changes 
in different lipid species, including lactosyl- and hexosyl-ceramides. The 
elevated levels of these specific lipid species could be a consequence of 
either increased glucosylceramide synthase or decreased glucosylcer
amidase activity. Adiponectin receptors (ADIPORs) display ceramidase 
activity [44,45]. Thus, higher adiponectin levels should result in overall 

lower ceramide levels, which was not the case in our lipedema patients. 
Either lipedema is accompanied by adiponectin resistance, or ceramides 
are generated faster than they can be degraded, hence a compensatory 
upregulation of the adiponectin/AdipoR axis as a compensatory 
mechanism.

Elevated serum ceramide levels are widely considered to be associ
ated with negative health outcomes [31,46]. Ceramide C22:0, C20:0, 
and C18:0 correlate negatively with adiponectin levels and positively 
with HOMA-IR, BMI z-score, as well as triglyceride and fasting blood 
glucose levels [47]. In addition, a negative correlation between cer
amide C16:0 and circulating adiponectin was reported [48]. Ceramides 
and sphingoid bases are important metabolic messengers that also 
contribute to regulation of apoptosis, oxidative stress, and the immune 
response [49,50], as highlighted by the use of the sphingosine analogue 
fingolimod for multiple sclerosis treatment [51]. Glycosylceramides are 
suggested to activate immune cell function, for example through LPS/ 
TLR4 complex orientation [52,53]. Related to LPS/TLR4 signaling, we 
recently proposed the accumulation of bacterial LPS in gluteofemoral 
adipose tissue to be a driving force of lipedema development [54]. While 
we could not measure these parameters in our lipedema serum samples, 
our findings related to changes in complement and coagulation path
ways are in agreement with this hypothesis.

Fig. 4. Lipedema serum measurements indicate mostly unchanged systemic cytokine and chemokine levels, but a trend towards increased VEGFA, decreased 
glutamic acid, and increased methionine sulfoxide levels. 
(A-B) Bar graphs of serum cytokines and chemokines in lipedema stage 1 patients (L1, n = 12) and control subjects (C, n = 13), menopausal women were excluded. 
Factors were grouped by abundance: low abundance (A), medium abundance (B). (C-R) ANCOVA of serum amino acids and glutathione species with ‘age’ and ‘BMI’ 
as covariates and ‘menopausal status’ as an independent variable in control subjects (C, n = 49), lipedema stage 1 patients (L1, n = 14), lipedema stage 2 patients (L2, 
n = 33), and lipedema stage 3 patients (L3, n = 25). (C–N) Bar graphs of serum amino acids. (O) Volcano plot of serum amino acids. Dotted line indicates FDR <
0.05. (P-R) Bar graphs of serum glutathione species and glutathione (GSH)/oxidized glutathione (GS-SG) ratio. Statistics: (A-B) Displayed as mean ± SEM; analyzed 
by one-way ANOVA. *, p < 0.05. (C-R) Displayed as mean (bar graphs); analyzed by ANCOVA (Python: statsmodels.formula.api.smf.OLS), multiple comparison 
correction with FDR Benjamini-Hochberg method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). p-values and FDRs are given as label where 
either is significant.

Table 2 
Multivariate Analysis of Covariance (MANCOVA) of serum amino acids with 
‘age’ and ‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and 
‘menopausal status’ as independent, categorical variables (related to Fig. 4).

Value Num DF Den DF F Value Pr > F

Intercept
Wilks' lambda 0.1331 31 83 17.437 0.0000
Pillai's trace 0.8669 31 83 17.437 0.0000
Hotelling-Lawley trace 6.5126 31 83 17.437 0.0000
Roy's greatest root 6.5126 31 83 17.437 0.0000

C (condition)
Wilks' lambda 0.6010 31 83 1.7776 0.0205
Pillai's trace 0.3990 31 83 1.7776 0.0205
Hotelling-Lawley trace 0.6639 31 83 1.7776 0.0205
Roy's greatest root 0.6639 31 83 1.7776 0.0205

C (menopausal status)
Wilks' lambda 0.7524 31 83 0.8809 0.6459
Pillai's trace 0.2476 31 83 0.8809 0.6459
Hotelling-Lawley trace 0.3290 31 83 0.8809 0.6459
Roy's greatest root 0.3290 31 83 0.8809 0.6459

BMI
Wilks' lambda 0.4134 31 83 3.7988 0.0000
Pillai's trace 0.5866 31 83 3.7988 0.0000
Hotelling-Lawley trace 1.4188 31 83 3.7988 0.0000
Roy's greatest root 1.4188 31 83 3.7988 0.0000

Age
Wilks' lambda 0.6121 31 83 1.6967 0.0302
Pillai's trace 0.3879 31 83 1.6967 0.0302
Hotelling-Lawley trace 0.6337 31 83 1.6967 0.0302
Roy's greatest root 0.6337 31 83 1.6967 0.0302

Table 3 
Multivariate Analysis of Covariance (MANCOVA) of serum glutathione species 
with ‘age’ and ‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and 
‘menopausal status’ as independent, categorical variables (related to Fig. 4).

Value Num DF Den DF F Value Pr > F

Intercept
Wilks' lambda 0.0400 5 109 523.8208 0.0000
Pillai's trace 0.9600 5 109 523.8208 0.0000
Hotelling-Lawley trace 24.0285 5 109 523.8208 0.0000
Roy's greatest root 24.0285 5 109 523.8208 0.0000

C (condition)
Wilks' lambda 0.8185 5 109 4.8333 0.0005
Pillai's trace 0.1815 5 109 4.8333 0.0005
Hotelling-Lawley trace 0.2217 5 109 4.8333 0.0005
Roy's greatest root 0.2217 5 109 4.8333 0.0005

C (menopausal status)
Wilks' lambda 0.9217 5 109 1.8525 0.1086
Pillai's trace 0.0783 5 109 1.8525 0.1086
Hotelling-Lawley trace 0.0850 5 109 1.8525 0.1086
Roy's greatest root 0.0850 5 109 1.8525 0.1086

BMI
Wilks' lambda 0.9012 5 109 2.3895 0.0425
Pillai's trace 0.0988 5 109 2.3895 0.0425
Hotelling-Lawley trace 0.1096 5 109 2.3895 0.0425
Roy's greatest root 0.1096 5 109 2.3895 0.0425

Age
Wilks' lambda 0.9283 5 109 1.6836 0.1446
Pillai's trace 0.0717 5 109 1.6836 0.1446
Hotelling-Lawley trace 0.0772 5 109 1.6836 0.1446
Roy's greatest root 0.0772 5 109 1.6836 0.1446
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Adipocyte hypertrophy is commonly associated with an infiltration 
of immune cells and the establishment of a pro-inflammatory environ
ment in adipose tissue [55]. Clinicians report that the adipose tissue of 
lipedema patients feels softer than that of control subjects [1]. Changes 
in extracellular matrix (ECM) composition and organization contribute 
to stiffening of a fibrotic tissue, which often is the result of cyclic 
inflammation. Fibrosis can be understood as a pathologic form of wound 
healing that leads to excessive ECM deposition and tissue scarring [56]. 
Lipedema disease gene pathways and their protein components are still 
unknown. Only a few reports on the diseased adipose tissue tran
scriptome have been published [39,57,58]. To our knowledge, this is the 
first study to indicate that lipedema coincides most strongly with 
increased gene and protein signatures of cell respiration, mitochondrial 
function, and oxidative phosphorylation as well as decreased signatures 
of immune effector processes and complement and coagulation cas
cades. In contrast to our findings, several previous reports suggested that 
increased inflammation would be a hallmark of lipedema adipose tissue 
[57–62]. Based on our data, we now hypothesize that the exclusion of 
immune cells from subcutaneous lipedema adipose tissue or the sup
pression of their activity is a key hallmark of the disease. Signs of 
reduced complement activation and diminished coagulation could be 

interpreted as further evidence supporting the notion of a local sup
pression of the immune response [63,64]. In fact, we recently proposed 
that an endotoxin-complement cascade may play an integral role in the 
regulation of adipocyte cellularity and that reduced complement activ
ity may be at the very source of the adipose tissue expansion in lipedema 
patients [65]. That the complement and coagulation pathways show up 
in the top 11 most affected proteomic but not transcriptomic pathways is 
to be expected, because the process of coagulation is primarily regulated 
on the protein level [54,66]. During the progression from early stages of 
lipedema to a more chronic manifestation of the disease pronounced 
adipose tissue damage accumulates. At stage 3 and in individuals that 
develop excessive fibrosis, damage to the adipose tissue may advance 
lymphedema development [28]. Importantly, lymphedema certainly 
induces immune cell infiltration [67]. We thus suggest that immune cell 
infiltration may occur as a consequence of co-occurring lymphedema, 
while our transcriptomic data questions its causative role in lipedema 
development and maintenance.

Adipose tissue pressure pain is a prevalent observation in lipedema 
patients [3]. Although pain levels were not assessed in this study, gene 
and protein signatures were found in lipedema patients that are con
nected to neurodegeneration. Future clinical lipedema studies should 
combine pain level measurements with multi-omics approaches.

Our measurements of circulating amino acid levels in lipedema pa
tients led to another key finding, reduced glutamic acid levels. Previous 
reports on changes in pyruvic acid, phenylalanine, and histidine levels 
were however not confirmed [36]. The observed changes in glutamic 
acid levels and associated metabolic processes may constitute a link 
between metabolic dysfunction and reduced inflammation in lipedema 
adipose tissue. In tendon injury models, glutamate was found to regulate 
mast cell function [68]. Glutamic acid is crucial for basic immune cell 
functions, including lymphocyte proliferation and cytokine production, 
macrophage phagocytic and secretory activities, and neutrophil bacte
rial killing [69]. As such, clinical nutritional protocols for pre- and post- 
operative treatment unrelated to lipedema include glutamic acid sup
plementation [70,71]. The glutamine dipeptides L-alanyl-L-glutamine 
(Ala-Gln), cleaved by human plasma amino peptidases, is the most 
suitable precursor of glutamic acid for nutritional supplementation [71]. 
Future clinical research with glutamine dipeptide supplementation of 
lipedema patients could investigate this potential link between meta
bolic and immune functions, potential in combination with liposuction 
surgery. There is indeed a pressing need for studying the response of 
individual lipedema symptoms to more common forms of therapy [12]. 
Immune-modulating drug and anti-histamine trials in women with 
lipedema, as identified as a priority by the Lipedema Foundation, are not 
supported by our finding that adipose tissue inflammation is actually 
reduced in lipedema patients compared to properly-matched control 
subjects.

To conclude, our multi-omics approach allows us to present 
comprehensive molecular disease hallmarks. The high resolution of our 
analysis allowed us to not only hypothesize gene ontology pathways, but 
also discover genes and proteins previously unrelated to lipedema dis
ease ontology and manifestation. Focusing on these molecular links 
could be instrumental to develop new lipedema treatment strategies.

Fig. 5. Lipedema serum measurements indicate changes in ceramide and sphingolipid metabolism and serum lipid measurements can be used to build accurate 
lipedema prediction models. 
The following groups were analyzed: C, control subjects (n = 49); L, lipedema stage 1–3 patients (n = 72). (A-D) ANCOVA of serum lipids and adipokines with ‘BMI’ 
as a covariate (A), ‘age’ as a covariate (B), ‘BMI’ and ‘age’ as covariates (C), or ‘BMI’ as a covariate and ‘menopausal status’ as an independent variable (D). Volcano 
plots are provided. Dotted lines indicate FDR < 0.05. (E-G) Benchmarking of three distinct supervised learning methods: RandomForest, Support Vector Machine 
(SVM), and ElasticNet. Confusion Matrices (E) and Receiver Operating Characteristic (ROC) curves (F) of the different serum factor measurement-based lipedema 
prediction models (sLPM) are given. Analyzed data was adjusted for age. (G) Permutation Feature Importance depicted as vertical bar graphs. Statistics: (A-D) 
Analyzed by ANCOVA (Python: statsmodels.formula.api.smf.OLS), multiple comparison correction with FDR Benjamini-Hochberg method (Python: statsmodels.stats. 
multitest.multipletests method=‘fdr_bh’). (E) Confusion Matrices (Python: sklearn.metrics.confusion_matrix). (F) Receiver Operating Characteristic curves (Python: 
sklearn.metrics.roc_curve). (G) Cross-Validation (Python: sklearn.model_selection cross_val_score) and Permutation Feature Importance (Python: sklearn.inspection. 
permutation_importance). Displayed as mean ± SD.

Table 4 
Multivariate Analysis of Covariance (MANCOVA) of serum lipids with ‘age’ and 
‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and ‘menopausal 
status’ as independent, categorical variables (related to Fig. 4).

Value Num DF Den DF F Value Pr > F

Intercept
Wilks' lambda 0.0291 49 68 46.2259 0.0000
Pillai's trace 0.9709 49 68 46.2259 0.0000
Hotelling-Lawley trace 33.3099 49 68 46.2259 0.0000
Roy's greatest root 33.3099 49 68 46.2259 0.0000

C (condition)
Wilks' lambda 0.1666 50 67 6.7046 0.0000
Pillai's trace 0.8334 50 67 6.7046 0.0000
Hotelling-Lawley trace 5.0034 50 67 6.7046 0.0000
Roy's greatest root 5.0034 50 67 6.7046 0.0000

C (menopausal status)
Wilks' lambda 0.2472 50 67 4.0814 0.0000
Pillai's trace 0.7528 50 67 4.0814 0.0000
Hotelling-Lawley trace 3.0458 50 67 4.0814 0.0000
Roy's greatest root 3.0458 50 67 4.0814 0.0000

BMI
Wilks' lambda 0.0986 50 67 12.2479 0.0000
Pillai's trace 0.9014 50 67 12.2479 0.0000
Hotelling-Lawley trace 9.1402 50 67 12.2479 0.0000
Roy's greatest root 9.1402 50 67 12.2479 0.0000

Age
Wilks' lambda 0.1775 50 67 6.2074 0.0000
Pillai's trace 0.8225 50 67 6.2074 0.0000
Hotelling-Lawley trace 4.6324 50 67 6.2074 0.0000
Roy's greatest root 4.6324 50 67 6.2074 0.0000
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3.1. Limitations of the study

Because this study is cross-sectional, we cannot draw firm conclu
sions regarding the contribution of specific factors and processes we 
identified to lipedema development and maintenance. For the analysis 
of disease pathway overlap, we chose to include patients from all lipe
dema stages in these analyses to discover candidate mechanisms that 
sustain lipedema, potentially biasing against mechanisms involved in 
early-stage lipedema development. Due to study-inherent challenges in 
collecting sufficient adipose tissue samples from all participants, our 
proteomic and transcriptomic analyses were performed not in one and 
the same subgroup, but in two overlapping subgroups that were sampled 
from the larger study cohort. In detail, only 5 of the respective 12 in
dividuals analyzed by proteomics were overlapping. This could have 
increased data variability, especially when comparing proteomic and 
transcriptomic changes. We are sharing our proteomic and tran
scriptomic primary data hoping that doing so will allow other re
searchers to add our data to their own analyses. To reach higher levels of 
accuracy and further test our new lipedema prediction models, addi
tional multi-center patient samples and data will need to be integrated. 
In addition, we caution that additional validation datasets are important 
to estimate the clinical robustness of the lipedema prediction tools that 
we provide.

4. Methods

4.1. Participants

All women gave written informed consent before enrolling in a study 
approved by the University of Arizona Human Research and Protection 
Program [28]. This manuscript describes the lipedema portion of that 
cross-sectional clinical study (NCT02838277), which took place be
tween June 2016 and October 2019. Further details can be found at cl 
inicaltrial.gov (https://clinicaltrials.gov/ct2/show/NCT02838277). 
The Human Subjects Protection Program (HSPP), as the administrative 
and regulatory support program to the Institutional Review Boards 
(IRBs), works in collaboration with the research community to maintain 
an ethical and compliant research program. An IRB reviewed all 
research and related activities involving human subjects conducted 
during this study. The University of Arizona HSPP has been accredited 
by the Association for Accreditation of Human Research Protection 
Programs (AAHRPP) since 2005. No harm was inflicted on the partici
pants as part of the study.

4.1.1. Inclusion criteria
Ambulatory males and/or females able to understand the consent 

process; of any race; 19–70 years of age; diagnosis of lipedema; in
dividuals without a fat disorder (will be matched by age, sex, race, and 
body mass index); weight stable for past 3 months within a 10 pound 
range per personal report of the subject; overweight or obese with BMI 
>26 kg/m2 in order to be able to get enough subcutaneous adipose tissue 
for the biopsy; individuals with BMI <26 kg/m2 may participate in all 
aspects of the study protocol except the subcutaneous adipose tissue 
biopsy; thyroid levels in the normal range as confirmed by a TSH mea
surement; may have treated hypothyroidism that is stable over 6 
months.

4.1.2. Exclusion criteria
HIV infection (because of the associated lipodystrophy and fatty 

growths [lipomas]); subjects will be excluded from having a subcu
taneous adipose tissue biopsy with any history of scleroderma, keloid 
formation, or other skin condition that would result in substantial 
scarring after biopsy; a history of recurrent cellulitis; other adipose tis
sue diseases (e.g. Dercum's disease, Familial Multiple Lipomatosis, or 
Madelung's disease); any history of bleeding diathesis that would place 
the subject at great risk for persistent bleeding after a biopsy/ 

liposuction; any history of major complication after a previous biopsy 
including requirement of a blood transfusion, hospitalization, failure to 
heal, or major infection requiring intravenous antibiotics, or anyone 
whose skin and tissue would put them at risk for an infection after the 
biopsy per the assessment of study staff and the principal investigator; 
these individuals may participate in the remainder of the protocol, just 
not the subcutaneous adipose tissue biopsy; use of any immunosup
pressant or corticosteroid medication; use of any anti-inflammatory 
medication such as NSAIDs, aspirin, histamine (H) 1 blocker, H2 
blocker, tetracycline, or corticosteroids within five days of the study 
procedure visit; use of medications that might cause weight gain (e.g. 
second generation anti-psychotics); blood donation <56 days prior to 
screening visit; tobacco or marijuana use which may alter inflammation 
in the body; any antibiotics within the last month, barium enema in the 
last week which would affect gut bacteria and the MRI; pregnancy due to 
the risks associated with the fat biopsy in the area of the fetus and 
because pregnancy will alter hormone levels; women without lipedema 
were matched by age and body mass index (BMI) to women with lipe
dema as a comparison group.

Initial matching during recruitment phase was done using MedCalc 
Statistical Software (MedCalc Software Ltd., Ostend, Belgium). Adjust
ments for BMI and/or age were implemented by multivariate regression 
analysis (ANCOVA or MANCOVA). Women were considered to be obese 
if their BMI was ≥30kg/m2. Participant's information on sex (assigned 
at birth), age, and race was self-reported. Information on gender and 
socioeconomic status was not collected. For reasons of statistical strin
gency only women with lipedema stages 1 to 3 and female control 
subjects were considered for the analyses. Heterogeneity in race was 
allowed for all groups, but mostly white women participated in the 
study. The number of subjects does not allow for subgrouping for dif
ferences in race. Two participants were excluded for missing key an
thropometrics data. Additionally, subgrouping was done according to 
the menopausal status of women. Throughout the clinical study, we 
abided by the principles of WMA's Declaration of Helsinki as revised in 
2013.

4.2. Biopsies

From January 2017 to October 2019, clean subcutaneous adipose 
tissue samples without skin were taken from underneath a 5 mm punch 
biopsies at the thigh and/or abdomen of women with and without 
lipedema. Serum was collected as well.

4.3. RNA sequencing analysis

RNA was isolated from human adipose tissue with TRIzol reagent 
(Invitrogen, #15596026) according to the manufacturer's instructions. 
Total RNA was submitted to Novogene, where quality control and li
brary preparation as well as sequencing was done as described in brief in 
the following. RNA libraries were build following poly(A) capture and 
reverse transcription to create cDNA fragments of 150 bp. According to 
Novogene, paired-end sequencing was performed on a Illumina Novo
Seq platform. RNA sequencing primary data was deposited at htt 
ps://www.ncbi.nlm.nih.gov/sra with the dataset identifier 
PRJNA940039. RNA sequencing results stored in the Fastq files were 
analyzed using the BICF RNASeq Analysis Workflow (Version pub
lish_0.5.15 - https://git.biohpc.swmed.edu/BICF/Astrocyte/rnaseq) of 
the UT Southwestern Astrocyte Workflow System. In short, this pipeline: 
(1) trims the ends of sequences with remaining adapter or quality scores 
<25 and removes any sequence <35 bp after trimming, (2) aligns 
trimmed Fastq files to the human reference genome (GRCh38) using 
HiSAT2, 3) Marks duplicates using SAMBAMBA, 4) counts features 
(genes, transcripts, and exons) using FeatureCounts and StringTie using 
the Gencode feature table, 5) performs basic pairwise differential 
expression analysis using EdgeR and DESeq, and 6) calculates abun
dances of transcripts using ballgown. Significantly regulated genes were 
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assessed by Bonferroni multiple comparison corrected p-value<0.05. 
Metascape [21] was used to perform tissue and cell type representation 
(PaGenBase), pathway enrichment (GO and KEGG), and transcription 
factor enrichment (TRRUST) analyses.

4.4. Metabolomics (sphingolipids, free amino acids, and sulfatides)

Mass spectrometry-based analyses were performed at the UT 
Southwestern Metabolic Phenotyping Core mass spectrometry facility.

4.4.1. Sphingolipids were extracted from serum samples as follows
50 μl of serum were added to 4.0 ml organic extraction solvent 

(isopropanol:ethyl acetate, 15:85; v:v). Immediately afterward, 20 μl 
internal standard solution was added (Ceramide/Sphingoid Internal 
Standard Mixture II at a 10 fold dilution in methanol combined with a 
mixture of C16 ceramide-d7 (d18:1-d7/16:0), C18 ceramide-d7 (d18:1- 
d7/18:0), C24 ceramide-d7 (d18:1-d7/24:0), and C24:1 ceramide-d7 
(d18:1-d7/24:1(15Z)) at a concentration of 2.4 μM; Avanti Polar 
Lipids, Alabaster, AL). The mixture was vortexed and 3.0 ml of HPLC 
water was added. Two-phase liquid extraction was performed, the su
pernatant was transferred to a new tube, and the aqueous phase was re- 
extracted. Supernatants were combined and evaporated under nitrogen. 
The dried residue was reconstituted in 200 μl of MeOH. Sphingolipid 
profiling was conducted by liquid chromatography-electrospray ioni
zation-tandem mass spectrometry (LC-MS/MS), using a Nexera X2 
UHPLC coupled to an LCMS-8060 (Shimadzu Scientific Instruments, 
Columbia, MD, USA). 3 μl and 1 μl of sample was injected for the 
analysis of sphingoid bases and ceramides, and sphingomyelins, 
respectively and the autosampler was kept at 9 ◦C during the duration of 
the batch analysis. Lipid separation was achieved by reverse-phase 
liquid chromatography on a 2.1 × 150 mm, 2.7 μm Ascentis Express 
C8 HPLC column (Supelco, Bellefonte, PA) using a gradient elution with 
H2O 5 mM ammonium formate 0.8 % formic acid (v/v) and MeOH 5 mM 
ammonium formate 0.8 % formic acid (v/v).

4.4.2. Free amino acids were extracted from serum as follows
15 μl of serum was added to 170 μl of 85 % MeOH (v/v). Immediately 

afterwards 20 μl of the internal standard cocktail was added. The in
ternal standard cocktail mixture was prepared by mixing 100 μl of 
Labeled Amino Acids Standards Set A1 (Cambridge Isotope Labora
tories, Inc., Tewksbury, MA), 50 μl of Metabolomics Amino Acids Mix 
Standard (Cambridge Isotope Laboratories, Inc.), 152 μl of an aqueous 
solution of 3-methyluric acid-2,4,5,6-13C4,1,3,9-15 N3 (99% atom % 
13C, 98 atom % 15 N, 97 % (CP); Sigma-Aldrich, St Louis, MO) at a 
concentration of 0.5 mg/ml, the internal standard solution was diluted 
with HPLC water to a final volume of 4.0 ml. The samples were vortexed 
for 30 s and centrifuged in a benchtop micro centrifuge for 10 min at 
17,000g, 4 ◦C. Supernatant was then transferred to a low absorption 
polypropylene autosampler vials. Samples were analyzed on a Nexera 
X2 UHPLC system coupled to an LCMS-8060 triple quadrupole mass 
spectrometer (Shimadzu Scientific Instruments). 2 μl were injected onto 
the analytical system and the autosampler was kept at 4 ◦C during the 
duration of the batch analysis. Free amino acids were analyzed using the 
mass spectrometry parameters and chromatographic conditions 
described in the Shimadzu LC/MS/MS Method Package for Cell Culture 
Profiling. The method was edited to include stable isotope labeled free 
amino acids internal standards SRM transitions.

4.4.3. Sulfatides were extracted and purified from serum samples as follows
150 μl of serum was added to 6.0 ml organic extraction solvent 

(isopropanol:ethyl acetate, 15:85; v:v). Immediately afterward, 20 μl 
internal standard solution was added (C18:8 mono-sulfo galactosyl(β) 
ceramide-d3 d18:1-d3/18:0) at a concentration of 10 μg/ml (Matreya, 
State College, PA) and 150 μl of acetic acid. The mixture was vortexed 
and 4.5 ml of HPLC water was added. Two-phase liquid extraction was 
performed, the supernatant was transferred to a new tube, and the pellet 

was re-extracted. Supernatants were combined and evaporated under 
nitrogen. Next, 100 μl of 1 M MeOLi in MeOH was added to the dried 
residues, vortex mixed for 15 s and kept on ice for one hour, vortexed 
again for 15 s and incubated on ice for another hour. The reaction was 
then quenched by adding 2.0 mL of aqueous AcOH (0.8 %; v:v). Next, 
4.0 ml of Hexane was added, and a 2-phase extraction was performed to 
eliminate interferences free fatty acids (two cycles). The top organic 
layer was discarded and the bottom aqueous phase was reextracted (two 
cycles) with 4.0 ml isopropanol:ethyl acetate (15:85; v:v). Organic ex
tracts were combined and dried under nitrogen. The dried residue was 
reconstituted in 200 μl of MeOH. 15 μl of reconstituted extract were 
injected into the analytical system with co-injection of 10 μl of water. 
The autosampler was kept at 4 ◦C during the duration of the batch 
analysis. Sulfatide species profiling was conducted by liquid 
chromatography-electrospray ionization-tandem mass spectrometry in 
negative mode, using a Nexera X2 UHPLC coupled to an LCMS-8060 
(Shimadzu Scientific Instruments). Lipid separation was achieved by 
reverse-phase liquid chromatography on a 2.1 × 50 mm, 1.9 μm Shi
madzu C18 HPLC column (Shimadzu Scientific Instruments) using a 
gradient elution with H2O/MeCN (1:1; v:v) 0.1 % formic acid and IPA/ 
MeCN (80:20; v:v) 0.1 % formic acid. This is a semiquantitative method, 
the relative abundance of sulfatide species are determined based on the 
peak area ratio with respect to the internal standard. A solution of brain 
sulfatides at a concentration of 20 μg/ml (Avanti Polar lipids) and 
sphingosine-1-galactoside-3-sulfate at a concentration of 1 μg/ml (lyso- 
sulfatide ammonium salt, Matreya) was used to optimize analytical 
parameters, and retention time determination.

LabSolutions V 5.114 and LabSolutions Insight V 3.8 SP4 program 
packages were used for mass spectrometry data processing (Shimadzu 
Scientific Instruments).

4.5. Proteomics

Mass spectrometry-based proteomic data was deposited to the Pro
teomeXchange Consortium via the PRIDE partner repository with the 
dataset identifiers PXD058489 and https://doi.org/10.6019/ 
PXD058489.

4.5.1. Adipose tissue homogenization
Approximately 50 mg of frozen thigh adipose tissue biopsies were 

homogenized on ice using a Brinkman Homogenizer (Model PT 10/35) 
in 300 μl detergent-containing lysis buffer A (50 mM HEPES, pH 7.6, 
150 mM NaCl, 20 mM NaPO4, 20 mM beta-glycerophosphate, 10 mM 
NaF, 2 mM NaVanadate, 2 mM EDTA, 1 % Triton-X100, 10 % glycerol, 2 
mM PMSF, 1 mM MgCl2, 1 mM CaCl2, 10 μg/ml leupeptin, 10 μg/ml 
aprotinin). Biopsies were homogenized until no visible tissue remained, 
approximately 3 × 10 second pulses. Adipose tissue lysates were then 
incubated on ice for 20 min followed by centrifugation for 20 min at 
14,000g, 4 ◦C. Protein concentration was determined using a Pierce BCA 
protein assay kit (Thermo Scientific, #23225). The protein concentra
tion averaged approximately 3.5 μg/μl.

4.5.2. In-gel digestion
80 μg of clarified homogenized adipose tissue lysate were separated 

on a 10 % SDS-PAGE gel and stained with Bio-Safe Coomassie G-250 
Stain. Tryptic digestion and desalting were performed as described [72]. 
In brief, each lane of the SDS-PAGE gel was cut into eight slices, placed 
in a 0.6 ml LoBind polypropylene tube (Eppendorf), destained twice 
with 375 μl of 50 % acetonitrile (ACN) in 40 mm NH4HCO3 and dehy
drated with 100 % ACN for 15 min. After removal of the ACN by aspi
ration, the gel pieces were dried in a vacuum centrifuge for 30 min at 
60 ◦C. Trypsin (250 ng; Sigma-Aldrich) in 20 μl of 40 mM NH4HCO3 was 
added and the samples were maintained for 15 min at 4 ◦C prior to the 
addition of 50–100 μl of 40 mM NH4HCO3. The digestion was allowed to 
proceed at 37 ◦C overnight and was terminated by addition of 10 μl of 5 
% formic acid (FA). After further incubation for 30 min at 37 ◦C and 
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centrifugation for 1 min, each supernatant was transferred to a clean 
LoBind polypropylene tube. The extraction procedure was repeated 
using 40 μl of 0.5 % FA and the two extracts were combined and dried 
down to approximately 5–10 μl followed by the addition of 10 μl 0.05 % 
heptafluorobutyric acid:5 % FA (v/v) and incubation at room tempera
ture for 15 min. The resulting peptide mixtures were loaded on a solid 
phase C18 ZipTip (Millipore, Billerica, MA) and washed with 35 μl 
0.005 % heptafluorobutyric acid:5%FA (v/v) followed by elution first 
with 4 μl of 50 % ACN:1 % FA (v/v) and then a more stringent elution 
with 4 μl of 80 % ACN:1 % FA (v/v). The eluates were combined and 
dried completely by vacuum centrifugation and 6 μl of 0.1 % FA (v/v) 
was added followed by sonication for 2 min. 2.5 μl of the final sample 
was then analyzed by mass spectrometry.

4.5.3. Mass spectrometry and database search
HPLC-ESI-MS/MS was performed in positive ion mode on a Thermo 

Scientific Orbitrap Fusion Lumos tribrid mass spectrometer fitted with 
an EASY-Spray Source (Thermo Scientific) as previously described [73]. 
In brief, NanoLC was performed using a Thermo Scientific UltiMate 
3000 RSLCnano System with an EASY Spray C18 LC column (Thermo 
Scientific, 75 cm × 75 μm inner diameter, packed with PepMap RSLC 
C18 material, 2 μm, #ES805); loading phase for 15 min at 0.300 μl/min; 
mobile phase, linear gradient of 1–34 % Solvent B in 119 min at 0.220 
μl/min, followed by a step to 95 % Buffer B over 4 min at 0.220 μl/min, 
hold 5 min at 0.250 μl/min, and then a step to 1 % Buffer B over 5 min at 
0.250 μl/min and a final hold for 10 min (total run 159 min); Buffer A =
0.1 % FA/H2O; Buffer B = 0.1 % FA in 80 % ACN. All solvents were 
liquid chromatography mass spectrometry grade. Spectra were acquired 
using XCalibur (version 2.3; Thermo Scientific). A “top speed” data- 
dependent MS/MS analysis was performed. Dynamic exclusion was 
enabled with a repeat count of 1, a repeat duration of 30 s, and an 
exclusion duration of 60 s. Tandem mass spectra were extracted from 
Xcalibur ‘RAW’ files and charge states were assigned using the Proteo
Wizard 3.0 msConvert script using the default parameters. The fragment 
mass spectra were then searched against the human SwissProt_2018 
database (20,413 entries) using Mascot (version 2.6.0; Matrix Science) 
using the default probability cut-off score. The search variables that 
were used were: 10 ppm mass tolerance for precursor ion masses and 
0.5 Da for product ion masses; digestion with trypsin; a maximum of two 
missed tryptic cleavages; variable modifications of oxidation of methi
onine and phosphorylation of serine, threonine, and tyrosine. Cross- 
correlation of Mascot search results with X! Tandem was accom
plished with Scaffold (version Scaffold_4.8.2; Proteome Software). 
Probability assessment of peptide assignments and protein identifica
tions were made through the use of Scaffold. Only peptides with ≥95 % 
probability were considered.

4.5.4. Label-free quantitative proteomics
Progenesis QI for proteomics software (version 2.4; Nonlinear Dy

namics Ltd.) was used to perform ion-intensity based label-free quanti
fication as previously described [74]. In brief, in an automated format, 
raw files were imported and converted into two-dimensional maps (y- 
axis = time, x-axis = m/z) followed by selection of a reference run for 
alignment purposes. An aggregate data set containing all peak infor
mation from all samples was created from the aligned runs, which was 
then further narrowed down by selecting only +2, +3, and +4 charged 
ions for further analysis. The samples were then grouped and a peak list 
of fragment ion spectra from only the top eight most intense precursors 
of a feature was exported in Mascot generic file (.mgf) format and 
searched against the human SwissProt_2018 database (20,413 entries) 
using Mascot (version 2.4; Matrix Science). The search variables that 
were used were: 10 ppm mass tolerance for precursor ion masses and 
0.5 Da for product ion masses; digestion with trypsin; a maximum of two 
missed tryptic cleavages; variable modifications of oxidation of methi
onine and phosphorylation of serine, threonine, and tyrosine; 13C = 1. 
The resulting Mascot .xml file was then imported into Progenesis, 

allowing for peptide/protein assignment, while peptides with a Mascot 
Ion Score of <25 were not considered for further analysis. Protein 
quantification was performed using only non-conflicting peptides and 
precursor ion-abundance values were normalized in a run to those in a 
reference run (not necessarily the same as the alignment reference run). 
Principal Component Analysis (PCA) and unbiased hierarchal clustering 
analysis and accompanying heat map visualization was performed in 
Perseus [75], while Volcano plots were generated in Python with Mat
plotlib. Gene Ontology and KEGG pathway analyses were performed 
with Metascape [21].

4.6. Serum analysis

Leptin (ALPCO, #11-LEPHU-E01) as well as high molecular weight 
and total adiponectin (ALPCO, #80-ADPHU-E01) were measured with 
ELISA kits according to the manufacturer's instructions. Human Cyto
kines and Chemokines (sCD40L, EGF, eotaxin, FGF2, FLT3 ligand, 
fractalkine, G-CSF, GM-CSF, GROα, IFNα2, IFNγ, IL1α, IL1β, IL1RA, IL2, 
IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL12p40, IL12p70, IL13, IL15, 
IL17A, IL17E/IL25, IL17F, IL18, IL22, IL27, IP10, MCP1, MCP3, MCSF, 
MDC (CCL22), MIG, MIP1α, MIP1β, PDGF-AA, PDGF-AB/BB, RANTES, 
TGFα, TNFα, TNFβ, VEGFA) were measured by Eve Technologies in their 
Human Cytokine/Chemokine 48-Plex Discovery Assay (#HD48).

4.7. Abbreviations

Gene (human reference genome (GRCh38)) and protein name ab
breviations are following the HUGO gene nomenclature committee 
recommendations (www.genenames.org)

4.8. Statistical analysis

In general, statistics were perfomed with Python (version 3.12.1). 
Pearson correlation coefficient and p-value for correlation testing was 
performed with the function scipy.stats.pearsonr. Two-sampled t-tests 
(scipy.stats.ttest_ind), one-way ANOVAs (scipy.stats.f_oneway) and two- 
way ANOVAs (statsmodels.formula.api.ols, anova_lm(model, type = 2)) 
were used as indicated. Statsmodels (version 0.14.2) was used in Python. 
sklearn.decomposition.PCA was used for Principal Component Analysis 
(PCA). False Discovery Rate (FDR) was calculated to correct p-values for 
multiple comparisons with the Benjamini-Hochberg method (statsmo
dels.stats.multitest.multipletests method=‘fdr_bh’). Analysis of cova
riane (ANCOVA) was performed with statsmodels.api.smf.OLS and 
formulas f'{dep_vars_str} ~ C(Condition) + Age', f'{dep_vars_str} ~ C 
(Condition) + BMI', f'{dep_vars_str} ~ C(Condition) + BMI + Age', or 
f'{dep_vars_str} ~ C(Condition) + BMI + Age + C(Menopause)'.

Multivariate analysis of covariance (MANCOVA) was performed 
with statsmodels.multivariate.manova and formula f'{dep_vars_str} ~ C 
(Condition) + BMI + Age + C(Menopause)'. MANCOVA statistical tests 
Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, Roy's greatest root 
were performed with statsmodels.multivariate.manova.MANOVA. 
mv_test.

All statistical information regarding Metascape (version 
3.5.20240901) can be found online (www.metascape.org/gp/index.htm 
l#/menu/release_history).

4.9. Machine learning

We implemented multiple supervised learning methods to generate a 
classification prediction tool with Python (version 3.12.1). The 
following Python libraries included in scikit learn (or sklearn; stable 
version 1.4.2) were used: Support Vector Machine (SVM, sklearn.svm. 
SVC), ElasticNet (Python: sklearn.linear_model.ElasticNet), Random 
Forest (Python: sklearn.ensemble.RandomForestClassifier). The dataset 
was first loaded into a pandas DataFrame and split into features and 
target variables. We then divided the data into training (80 %) and 
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testing (20 %) sets to evaluate the model's performance (Python: 
sklearn.model_selection.train_test_split). Feature scaling was applied to 
standardize the features, ensuring they have a mean of 0 and a standard 
deviation of 1 (Python: sklearn.preprocessing.StandardScaler or Min
MaxScaler). After training, the models were used to make predictions on 
the test set. The performance of the model was assessed using metrics 
such as accuracy, precision, recall, and the F1-score (Python: sklearn. 
metrics.classification_report or confusion_matrix). For cross-validation 
5-fold CV mean ± SD was calculated (Python: sklearn.model_selection. 
cross_val_score). Feature importance was calculated using permutatio
n_importance (Python: sklearn.inspection).
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