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ABSTRACT

Lipedema is a chronic disease in females characterized by pathologic subcutaneous adipose tissue expansion and
hitherto remains without druggable targets. In this observational study, we investigated the molecular hallmarks
of lipedema using an unbiased multi-omics approach. We found adipokine dysregulation in lipedema patients
participating in a cross-sectional clinical study (ClinicalTrial.gov, NCT02838277), pointing towards the adipo-
cyte as a key player. Analyses of newly generated transcriptomic (SRA, PRJINA940039) and proteomic (Pro-
teomeXchange, PXD058489) datasets of early- and late-stage lipedema samples revealed a local downregulation
of factors involved in inflammation. Concomitantly, factors involved in cellular respiration, oxidative phos-
phorylation, as well as in mitochondrial organization were upregulated. Measuring a cytokine and chemokine
panel in the serum of non-menopausal women, we observed little systemic changes in inflammatory markers, but
a trend towards increased VEGF. Metabolomic and lipidomic analyses highlighted altered circulating glutamic
acid, glutathione, and sphingolipid levels, suggesting a broader dysregulation of metabolic and inflammatory
processes. We subsequently benchmarked a set of models to accurately predict lipedema using serum factor
measurements (SLPM). Our study of the molecular signature of lipedema thus provides not only potential targets

for therapeutic intervention, but also candidate markers of disease development and progression.

1. Introduction

Lipedema is considered a chronic “loose connective tissue” disease
[1] that predominantly affects women and manifests in pronounced
changes in adipose tissue morphology and consistency in affected areas
[2]. Cardinal symptoms include pain, swelling, and easy bruising,
typically of the legs and arms [3]. Late-stage lipedema patients experi-
ence severe reductions of their mobility and quality of life [1]. In the
World Health Organization's 11th revision of the International
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Classification of Diseases (ICD-11), lipedema is referred to ‘Lipoedema’
and assigned the code ‘EF02.2’. While prevalent, due to frequent
misdiagnosis, the actual incidence rate is estimated to be up to ~10 % in
women [4,5]. In the 2023 Lipedema Foundation's research roadmap, the
“absence of validated and clear druggable targets™ led to a call for action
[6]. The only widely applied treatment option for lipedema is liposuc-
tion [7,8], which remains very effective for plastic reconstruction but
can worsen adipose tissue health in the long term [9,10]. The underlying
disease causes have remained elusive because lipedema affects a
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complex network of different cell and tissue types and presents as
distinct stages [4,11]. Disease onset is positively associated with puberty
and pregnancy, which suggests a major role of sex hormones like es-
trogen [12] and cyclical changes in gut wall permeability [13,14].
Heritability has been suggested to be autosomal dominant with sex
differences [15]. The progressive appearance of distinct symptoms
during lipedema development has led the field to subdivide the disease
into 3 stages [1,16]. At stage 1, patients exhibit a normal skin surface but
an enlarged hypodermis. At stage 2, the patient's skin becomes uneven
and larger mounds of adipose tissue grow as non-encapsulated masses.
At stage 3, patients display deformations of the thighs caused by large
extrusions of adipose tissue. While lymphedema can occur at any stage
of lipedema, it is most frequently observed at stage 3. Allen and Hines
proposed that edema formation is a consequence of poor resistance of
accumulated adipose tissue against fluid pressure from capillaries into
the interstitium [17].

Adipokines regulate a plethora of biological processes, including
inflammation and fibrosis, and their secretion is shaped by age, BMI, and
menopausal status and could thus play an important role in lipedema
manifestation [18]. Adiponectin and leptin are two major adipokines
whose levels correlate negatively and positively with BMI, respectively
[19]. While adiponectin acts as an insulin-sensitizer and exerts anti-
inflammatory and anti-fibrotic functions, leptin acts as a regulator of
energy balance and exerts pro-inflammatory and pro-fibrotic functions
[20].

In this study, we employed a multi-pronged approach of combined
adipose tissue transcriptomics and proteomics as well as serum cytokine
and chemokine measurements, metabolomics, and lipidomics to define
molecular hallmarks of lipedema. We performed a comprehensive
analysis of the gathered data using Metascape [21] to assess Pattern Gene
Database (PaGenBase) tissue and cell type representation [22], Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment [23-26], and Transcriptional Regulatory Relation-
ships Unraveled by Sentence-Based Text-Mining (TRRUST) transcription
factor enrichment [27]. We furthermore took advantage of these newly
acquired, expansive serum factor measurements datasets to train and
benchmark multiple lipedema prediction models.

2. Results

2.1. Early lipedema is characterized by disrupted correlations between
circulating adipokine levels and BMI

To characterize lipedema development, 72 female lipedema patients
(stages 1-3) and 49 female control subjects were compared. As previ-
ously published, all individuals consented in writing before enrollment
in a study approved by the University of Arizona Human Research and
Protection Program [28] (see STROBE diagram in Fig. 1A). The Inclusion
Criteria for both groups at enrollment were: sex male or female (only
females were analyzed); any race; age of 19-70 years; normal TSH
levels; stable body weight in the past 3 months (allowed fluctuation of
+4.5 kg). The Exclusion Criteria at enrollment were: pregnancy; HIV
infection; scleroderma, keloid formation, or other skin conditions;
cellulitis; bleeding diathesis; use of immunosuppressants or corticoste-
roids; use of tobacco or marijuana; current weight gain medication (e.g.
anti-psychotics); use of NSAIDs, aspirin, histamine (H) 1 blocker, H2
blocker, tetracycline, or corticosteroids within the past 5 days; barium
enema within the past 7 days; use of any antibiotic within the past 30
days; blood donation within the past 56 days. A healthy control group
was matched for age, sex, race, and BMI. Herein we describe the lipe-
dema study part of the clinical study NCT02838277. As a consequence,
individuals with other adipose tissue disorders (e.g. Dercum's disease or
familial multiple lipomatosis) were excluded. Subsampling for down-
stream analyses was required when tissue or serum sample amounts
were limited.

Although debatable, in a first approximation, we assumed that
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lipedema develops successively from stage 1 to stage 2 and thereafter to
stage 3, accompanied by increases in adipose tissue size. We used the
following staging criteria: Stage 1, the skin is even and subcutaneous
adipose tissue is enlarged with buildups around pelvis, buttocks, hips,
and knees; Stage 2, the skin is uneven with indentations in adipose tissue
and larger mounds that can be felt (sometimes referred to as lipomas);
Stage 3, there are large extrusions of adipose tissue especially at the hips
and around the knees. Lipedema patients at stage 1 and control subjects
(Table 1) were comparable in their BMI (Fig. 1B), age (Fig. S1A), and
menopausal status (Fig. 1C). In contrast, lipedema patients at stages 2
and 3 exhibited a higher BMI and age. While menopausal individuals
were, on average, older within all groups (Fig. S1B), differences in BMI
between pre-menopausal and menopausal individuals were only
observed for lipedema patients at stage 1 (Fig. S1C), which is important
regarding adjustments for age in later analyses.

Lipedema development coincides with pronounced changes in adi-
pose tissue anatomy. Serum adipokine concentrations, especially those
of adiponectin (ADIPOQ) and leptin (LEP), can provide insights into
adipose tissue health. We thus correlated serum ADIPOQ and LEP levels
with BMI within each group (Fig. 1D-E). Circulating adiponectin levels
have previously been found to correlate negatively with BMI [29,30].
Our control subjects' serum adiponectin levels fell short of being
significantly correlated with BMI, but in lipedema patients at stage 1 the
correlation was far weaker (Fig. 1D). Compared to control subjects, both
p-value and Pearson correlation coefficient (p) changed strongly at
lipedema stage 1 from 0.09 to 0.62 (p-value) and —0.25 to 0.15 (p)
(Fig. 1D). The circulating levels of high molecular weight adiponectin
(HMW ADIPOQ), a more active form of the hormone, displayed similar
trends (Fig. 1F). Overall, the mean ADIPOQ levels were comparable
between groups, with the exception of lipedema stage 2 (Fig. S1F).
Compared to ADIPOQ levels, LEP levels displayed a strong positive
correlation with BMI in controls as well as stage 2 and 3 lipedema pa-
tients (Fig. 1E, Fig. S1E). However, in stage 1 lipedema patients, a strong
disruption of that correlation was observed (Fig. 1E, Fig. S1E).

The lipedema stage 2 and 3 groups contained an increased fraction of
menopausal individuals compared to the lipedema stage 1 and control
groups (Fig. 1C). Could menopause-associated differences in sex hor-
mones mask part of the effect of lipedema on adipocyte function? To
answer that question, we excluded menopausal individuals from our
analysis of ADIPOQ and LEP levels. We dropped the stage 3 group
altogether, because removing menopausal women represented a too
large fraction of that group. Restricting our analyses to pre-menopausal
women, the correlations of circulating ADIPOQ levels with BMI became
clearer, while those of circulating LEP with BMI remained largely un-
affected (Fig. SID-E). As a consequence of the small sample size, we
caution that future studies will be needed to confirm this dissociation of
adipokine secretion from adipose tissue mass. However, our data sug-
gests that adipocyte function could be most impacted at the onset of
lipedema development, which may be covered up by exacerbated
obesity at later stages.

2.2. The lipedema adipose tissue transcriptome exhibits patterns of
increased oxidative phosphorylation and decreased leukocyte activation
and respiratory burst

We next pursued an unbiased, discovery-driven analysis of the bio-
logical processes underlying lipedema development. To this end, we
performed RNA sequencing of abdominal and thigh subcutaneous adi-
pose tissue (below a 5 mm punch biopsy) of a BMI- and age-matched
subgroup of 14 lipedema patients (stages 1-3) and 7 control subjects
without menopause (Fig. 2A, Table S1). We included lipedema patients
at stages 1 to 3 because we hypothesized that the biological processes
that are central to sustaining the disease are present at all stages. RNA
sample or RNAseq data quality was too low for abdominal fat samples of
UA0427 and UA0627, and for thigh fat samples of UA0036, UA0624.
The total n-number of 21 can be explained by the inclusion 17
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STROBE diagram: Selection of participants in the lipedema study from the clinical trial (NCT02838277) B X %k %k %k
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Fig. 1. Early lipedema is characterized by disrupted correlations between circulating adipokine levels and BMI.

(A) STROBE diagram of the clinical study (NCT02838277) with specific focus on the selection of participants in the lipedema study. For serum based analyses
(analysis 1), the following groups were analyzed: C, control subjects (n = 49); L1, lipedema stage 1 patients (n = 14); L2, lipedema stage 2 patients (n = 33); L3,
lipedema stage 3 patients (n = 25). (B) Bar graph of body mass index (BMI). (C) Histogram of study subject count (y-axis = total count) and prevalence of menopause
in percent (number inside box). (D-F) Dot plot and correlations of serum adipokines with BMI. Serum adiponectin with BMI (D), serum leptin with BMI (E), and serum
high molecular weight (HMW) adiponectin with BMI (F). Data includes all women regardless of menopausal status. Pearson correlation coefficient (rho, p) and p-
value (p) are given for each subgroup. Statistics: (B) Displayed as mean + SEM; analyzed by one-way ANOVA (scipy.stats.f oneway) with correction for multiple
testing with FDR Benjamini-Hochberg method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). *, FDR < 0.05; **, FDR < 0.01; ***, FDR < 0.005;

, FDR < 0.001. (D-F) Pearson correlation (Python: scipy.stats.pearsonr).

Table 1
Characteristics of the groups of participants analyzed in this study.
Group n Sex BMI BMI Age Age Race
(M/F) (mean + SEM) (p-value) (mean + SEM) (p-value) (n)
Control (C) 49 0/49 29.12 £ 0.84 ‘CvsLl’,p=0.58 38.83 +1.92 ‘CvsLl’, p=0.52 White, 39
‘CvsL2’, p = 0.0004 ‘CvsL2’, p=0.0008 Asian, 5
‘Cvs L3’ p < 0.00001 ‘Cvs L3’, p = 0.00007 Black, 2
American Indian or Alaska Native/Asian, 2
American Indian or Alaska, 1
Lipedema stage 1 (L1) 14 0/14 30.07 +1.31 ‘CvsLl’, p=0.58 41.21 + 3.10 ‘CvsLl’,p=0.52 White, 13
‘L1 vs L2’, p = 0.023 ‘L1 vs L2°, p = 0.041 Black, 1
‘L1 vs L3’, p = 0.0002 ‘L1 vs L3", p = 0.0084
Lipedema stage 2 (L2) 33 0/33 34.34 £1.23 ‘Cvs L2°, p = 0.0004 49.93 + 2.28 ‘Cvs L2°, p = 0.0008 White, 32
‘L1 vs L2, p = 0.023 ‘L1 vs L2°, p = 0.041 American Indian or Alaskan Native, 1
‘L2 vs L3’, p = 0.0009 ‘L2 vs L3’, p = 0.215
Lipedema stage 3 (L3) 25 0/25 42.15+1.92 ‘Cvs L3’, p < 0.00001 52.76 £ 2.19 ‘C vs L3’, p = 0.00007 White, 23
‘L1 vs L3’, p = 0.00017 ‘L1 vs L3’, p = 0.008 Asian, 1
‘L2 vs L3’, p = 0.0009 ‘L2 vs L3’, p = 0.215 Black, 1

All participants in this study stem from a larger cross-sectional clinical study (NCT02838277).

overlapping patients for thigh and abdominal locations and each two
unique IDs for each location. Performing a principal component anal-
ysis, we observed no clear clustering of samples based on adipose tissue
depot (Fig. 2B). However, a diagonal line could be assumed to divide a
more spread cluster of lipedema samples from a less spread of control
samples with slight overlap at the edges (Fig. 2B). A separate approach
of hierarchical clustering confirmed this trend (Fig. S2A).

The high variation in adipose tissue transcriptome analysis pre-
vented us from finding any differentially expressed genes (DEGs) at the
given number of patients when comparing lipedema and control samples
at each location separately (Fig. 2C-D). Comparing all samples inde-
pendent of location, we discovered a total of 296 DEGs (Fig. 2E,
Table S2; False Discovery Rate (FDR) < 0.05). Next, we separately
queried Metascape with the 144 upregulated, or the 152 downregulated
DEGs to analyze our RNAseq data for tissue and cell type representation
(PaGenBase), pathway enrichment (GO and KEGG), and transcription
factor enrichment (TRRUST).

PaGenBase pattern analysis of this list of DEGs revealed adipose
tissue of lipedema patients to be enriched only in expression patterns
‘adipose tissue’ (Fig. 2F) and depleted of expression patterns including
‘blood’, ‘spleen’, ‘bone marrow’, ‘lung’, and ‘thymus’ (Fig. 2G). GO
pathway analysis of upregulated DEGs showed an enrichment for ‘aer-
obic respiration’, ‘cellular respiration’, ‘oxidative phosphorylation’,
‘energy derivation by oxidation of organic compounds’, ‘respiratory
electron transport chain’, and ‘generation of precursor metabolites and
energy’ (Fig. 2H, Table S3), providing a glimpse into potential causes of
lipedema. KEGG pathways found analyzing upregulated DEGs included
‘oxidative phosphorylation’, ‘diabetic cardiomyopathy’, ‘thermogene-
sis’, ‘chemical carcinogenesis - reactive oxygen species’, ‘Parkinson's
disease’, ‘prion disease’, ‘Huntington disease’, ‘Alzheimer's disease’,
‘non-alcoholic fatty liver disease’, ‘amyotrophic lateral sclerosis’, and
‘pathways of neurodegeneration - multiple diseases’ (Fig. 21, Table S3).
For downregulated DEGs, GO pathway analysis showed an enrichment
for ‘leukocyte activation’, ‘endocytosis’, ‘cell activation’, ‘respiratory
burst’, ‘phagocytosis’, ‘import into cell’, ‘lymphocyte activation’, ‘im-
mune effector process’, and ‘innate immune response’ (Fig. 2J, Table S4)
and KEGG pathway analysis an enrichment for ‘chemokine signaling

pathway’, ‘Fc gamma R-mediated phagocytosis’, ‘Leishmaniasis’, ‘Yer-
sinia infection’, ‘osteoclast differentiation’, ‘phagosome’, and ‘platelet
activation’ (Fig. 2K, Table S4). Taken together, these pathway analyses
suggest a local enhancement of oxidative phosphorylation and cellular
respiration as well as suppression of inflammation and immune cell
activation in lipedema adipose tissue.

We furthermore investigated enrichment of known transcription
factors (TFs) of the DEGs using TRRUST. Only PPARG was found for the
upregulated genes (Fig. 2L). For downregulated genes TFs, we found
HBP1, SPI1, CEBPA, MYB, SP1, and ETS1 to be enriched (Fig. 2M).

Throughout the literature, the abdominal fat of lipedema patients is
often considered to be ‘unaffected” while their thigh fat is considered to
be ‘affected’ by the disease. Because there is a great interest in finding
differences between the fat residing in these different locations, we used
a less rigorous statistical method to define, in a second step, all genes
that have a one-way ANOVA p-value smaller than 0.05 as uncorrected
differentially expressed genes (uDEGs) (Fig. S2B-G). This constitutes an
analysis without correction for multiple testing, thus increasing the
number of DEGs but risking a disproportionately high number of false
positives. We found similar numbers of uDEGs specific for each location:
814 for abdominal fat, 732 for thigh fat, and 248 overlapping (Fig. S2B).
By applying logics to the up- and down-regulated uDEGs that are specific
for each location, abdomen or thigh, and the uDEGs that are overlapping
for both (Fig. S2C), we attempted to determine to what extend suppos-
edly ‘unaffected’ differed from ‘affected’ lipedema adipose tissue.
Enrichment refers to how statistically overrepresented a GO term within
a set of genes is compared to the expected frequency of that term in the
whole genome. A total of 37 GO pathways with a -log(p-value) > 5 were
called from uDEGs in both abdominal and thigh fat (also called ‘over-
lapping’), 54 GO pathways were specific for abdominal and not present
in thigh fat, and 72 GO pathways were specific for thigh and not present
in abdominal fat (Fig. S2D). Adipose tissue from both locations exhibited
most significant changes in GO pathways including ‘oxidative phos-
phorylation’ and ‘cellular respiration’ (Fig. S2E). This confirmed pre-
vious findings with DEGs of combined depot analysis applying a stricter
FDR < 0.05 filter. When removing all the overlapping pathways from
analysis, abdominal fat distinctly exhibited changed GO pathways
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Fig. 2. The lipedema adipose tissue transcriptome exhibits patterns of increased oxidative phosphorylation and decreased leukocyte activation and respiratory burst.
The following groups were analyzed: C, control subjects (n = 6 (abdomen)-7 (thigh)); L, lipedema stage 1-3 patients (n = 12 (thigh)-13 (abdomen)). (A) Bar graph of
body mass index (BMI) and age. (B) Principal Component Analysis (PCA) of transcriptome data from lipedema and control subcutaneous adipose tissue taken from
the abdomen or thigh. (C-E) Volcano plots of differentially expressed genes (DEGs) in abdominal (C), thigh (D), and combined abdominal and thigh (E) adipose tissue
depots (FPKM >5). Dotted line indicates FDR < 0.05. (F-G) PaGenBase tissue and cell type representation in upregulated and downregulated DEGs. (H-I) GO and
KEGG pathway enrichment in upregulated DEGs. (J-K) GO and KEGG pathway enrichment in downregulated DEGs. (L-M) TRRUST transcription factor enrichment
for upregulated and downregulated DEGs. Statistics: (A) Displayed as mean + SEM; analyzed by one-way ANOVA (Python: scipy.stats.f oneway). (B) PCA (Python:
sklearn.decomposition.PCA). (C-E) Analyzed by two-sampled t-test (Python: scipy.stats.ttest_ind), multiple comparison correction with FDR Benjamini-Hochberg

method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). (F-M) Analyzed using Metascape (version 3.5.20240901).

related to ‘mitochondrial translation’ and ‘mitochondrial respirasome
assembly’ (Fig. S2F), while thigh fat exhibited changed GO pathways
related to the ‘regulation of actin cytoskeleton organization’ (Fig. S2G).
To summarize, some transcriptomic changes are unique for each loca-
tion, but important GO pathways are altered in fat from both locations.
This strongly suggests that both adipose tissue depots are affected by
lipedema.

2.3. The lipedema adipose tissue proteome validates transcriptomic
findings and furthermore suggests local dysfunctions in complement and
coagulation cascades

To validate our RNAseq findings, we chose to perform quantitative
proteomics comparing global protein expression changes between thigh
subcutaneous adipose tissue biopsies (below a 5 mm punch biopsy) from
BMI- and age-matched lipedema patients and control subjects (Table S5,
Fig. 3A). Only 5 of the respective 28 individuals overlapped between
transcriptomic and proteomics analyses (see Table S1 for Patient IDs).
Our analysis identified a total of 4987 proteins across 108 fractions from
12 samples. Unbiased Principal Component Analysis (PCA) segregated
samples into two distinct groups (Fig. 3B). 171 differentially expressed
proteins (DEPs) had an FDR < 0.05 (Table S6). Next, we separately
queried Metascape with the 137 upregulated from the 34 downregulated
DEPs to analyze our proteomics data for tissue and cell type represen-
tation (PaGenBase), pathway enrichment (GO and KEGG), and tran-
scription factor enrichment (TRRUST). The low number of DEPs was not
enough for PaGenBase analysis. However, GO pathway analysis of
upregulated DEPs demonstrated an enrichment for ‘mitochondrial or-
ganization’, ‘mitochondrial membrane organization’, ‘membrane orga-
nization’, ‘carboxylic acid metabolic process’, ‘protein localization to
organelle’, ‘intracellular protein transport’, and ‘cellular respiration’
(Fig. 3D, Table S7). Subjecting the list of upregulated DEPs to KEGG
pathway analysis revealed an enrichment for ‘fatty acid elongation’,
‘nucleotide metabolism’, ‘purine metabolism’, ‘chemical carcinogenesis
- reactive oxygen species’, ‘fatty acid metabolism’, ‘oxidative phos-
phorylation’ (Fig. 3E, Table S7). Downregulated DEPs were associated
with GO pathways including ‘humoral immune response mediated by
circulating immunoglobulin’ and ‘complement activation’ (Fig. 3F,
Table S8) as well as KEGG pathways including ‘complement and coag-
ulation cascades’, and ‘Staphylococcus aureus infection’ (Fig. 3G,
Table S8). Next, we plotted the -log10(p-value) of the most significant
transcriptomic against the respective proteomic GO pathways (Fig. 3H-
D). The identified upregulated GO terms ‘cellular respiration’ and
‘oxidative phosphorylation’ as well as the downregulated ‘immune
effector process’ and ‘leukocyte mediated immunity’ feature prominent
in both datasets. The low number of DEPs did not allow for a proper
TRRUST analysis.

2.4. Lipedema serum measurements indicate mostly unchanged systemic
cytokine and chemokine levels, but a trend towards increased VEGFA
levels, decreased glutamic acid levels, and increased oxidative stress

To assess whether the suppressed immune cell activation within
adipose tissue is reflected or maybe even caused by changes in circu-
lating cytokine and chemokine levels, we utilized a human cytokine and
chemokine panel to analyze serum samples of pre-menopausal, BMI- and

age-matched stage 1 lipedema patients (12 individuals) and control
subjects (13 individuals) (Table S9). Of the 48 cytokines and chemokines
contained in the panel, only three were significantly changed when a
less rigorous one-way ANOVA without correction for multiple compar-
isons was applied (Fig. 4A-B). Specifically, we observed a trend towards
reduced IL5 and FLT3L levels, suggesting that B-cell and dendritic cell
proliferation and growth and eosinophil activation could be inhibited
(Fig. 4A) as well as a trend towards elevated VEGFA levels, suggesting
that vascular dysregulation may be present (Fig. 4B). Most importantly,
the systemic inflammatory state of lipedema patients appears
unchanged.

Next, we measured circulating levels of 31 amino acids for stage 1-3
lipedema patients (72 individuals) and control subjects (49 individuals)
(Table 1, Table S1). In an Analysis of Covariance (ANCOVA) with ‘age’
and ‘BMI’ as covariates and ‘menopausal status’ as an independent
variable, most amino acid levels were found to be comparable (Fig. 4C-
N). Notably though, we observed a significant decrease in glutamic acid
across all lipedema stages in comparison to control samples (Fig. 4H).
When combining all lipedema stages, methionine sulfoxide was found to
be significantly increased (Fig. 40). Multivariate Analysis of Covariance
(MANCOVA) with ‘condition’ (C, L1, L2 and L3) and ‘menopausal status’
as independent, categorical variables and ‘age’ and ‘BMI’ as continuous
covariates revealed that the ‘condition’ (i.e. lipedema) significantly af-
fects serum amino acid concentrations and that menopause does not
cover up these changes (Table 2).

Since glutamic acid is required for the synthesis of glutathione
(GSH), an important anti-oxidant factor, we also assessed the circulating
levels of reduced and oxidized glutathione (GSSG) using mass spec-
trometry (Fig. 4P-Q). Reduced glutamic acid levels did not correspond
with reduced glutathione serum levels, but a trend towards a reduced
GSH/GSSG ratio was apparent (Fig. 4R). MANCOVA with ‘condition’ (C,
L1, L2 and L3) and ‘menopausal status’ as independent, categorical
variables and ‘age’ and ‘BMI’ as continuous covariates showed that the
‘condition’ (i.e. lipedema) and BMI have a significant, but slight effect
on serum glutathione concentrations (Table 3).

2.5. Differences in ceramide and sphingolipid metabolism are sufficient to
develop accurate serum-based lipedema prediction models

Adiponectin receptors contain a ceramidase domain and their acti-
vation has been reported to decrease ceramide and increase sphingolipid
levels. Sphingolipids can act as messenger molecules and have been
implicated in cardiovascular diseases [31,32]. To gain further insights
into lipedema's impact on metabolism, we measured 81 distinct circu-
lating lipids by mass spectrometry, including 10 sphingomyelins, 5
sphingoid bases, 7 lactosyl-ceramides, 7 hexosyl-ceramides, 7 dihydro-
ceramides, 11 ceramides, and 34 sulfatides in serum samples from 72
lipedema patients (stages 1-3) as well as 49 control subjects. Combining
lipedema patients of stages 1-3 (Table S10), circulating ADIPOQ and
LEP levels were higher compared to control subjects (Fig. 5A-D). We also
performed ANCOVA with ‘BMI’, ‘age’, or ‘BMI & age’ as covariates.
When adjusting age alone, significance for ADIPOQ was lost, whereas
significance for LEP became more pronounced (Fig. 5B). Across all ad-
justments, serum ceramide species were found to be persistently
increased in abundance. As age and menopause are closely related
variables, we also performed ANCOVA with ‘BMI’ as a covariate and
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Fig. 3. The lipedema adipose tissue proteome validates transcriptomic findings and furthermore suggests local dysfunctions in complement and coagulation cas-

cades.

The following groups were analyzed: C, control subjects (n = 6); L, lipedema stage 1-3 patients (n = 6). (A) Bar graph of body mass index (BMI) and age. (B) Principal
Component Analysis (PCA) of proteome data from lipedema and control subcutaneous adipose tissue taken from the thigh. (C) Volcano plots of differentially
expressed proteins (DEPs) in the thigh adipose tissue depot. Dotted line indicates FDR < 0.05. (D-E) GO and KEGG pathway enrichment in upregulated DEPs. (F-G)
GO and KEGG pathway enrichment in downregulated DEPs. (H-I) GO pathway enrichment cross-validation between transcriptomic and proteomic results. Analysis of
DEGs (combined abdominal and thigh) and DEPs (only thigh). Statistics: (A) Displayed as mean + SEM; analyzed by one-way ANOVA (Python: scipy.stats.f oneway).
(B) PCA (Python: sklearn.decomposition.PCA). (C) Analyzed by two-sampled t-test (Python: scipy.stats.ttest_ind), multiple comparison correction with FDR

Benjamini-Hochberg method (Python: statsmodels.stats.multitest. multipletests method=‘fdr_bh’). (D-I) Analyzed using Metascape (version 3.5.20240901).

‘menopausal status’ as an independent variable. This yielded results
very similar to those obtained following adjustment for BMI & age
(Fig. 5D). This suggests lipedema to have a potential impact on whole
body ceramide and sphingolipid metabolism.

MANCOVA with ‘condition’ (C, L1, L2 and L3) and ‘menopausal
status’ as independent, categorical variables and ‘age’ and ‘BMI’ as
continuous covariates demonstrated that BMI has the strongest effect on
serum ceramide and sphingolipid concentrations (Table 4). We also
observed that the effect of the ‘condition’ (i.e. lipedema) is similar to
that of age, with menopause covering up a substantial portion of the
effect size as described by Hotelling-Lawley trace and Roy's greatest root
statistical tests (Table 4).

The large number of analyzed samples and measured parameters
(adipokines and sphingolipids) motivated us to benchmark three
different approaches to find an accurate serum lipedema prediction
model (sLPM) [33,34]. The following analyses included 121 study par-
ticipants, irrespective of menopausal status. We used 81 serum lipid
parameters as well as 3 adipokines (ADIPOQ, HMW ADIPOQ, and LEP)
that we measured (Fig. 5G). We first normalized the data and then
divided the samples randomly into training (80 %) and test (20 %)
datasets (Python: sklearn.model_selection.train_test_split) [33,34]. The
three types of prediction model classifiers were Random Forest Classifier
(Python: sklearn.ensemble.RandomForestClassifier), Support Vector
Machine (SVM) (Python: sklearn.svm.SVC), and ElasticNet (Python:
sklearn.linear_model.ElasticNet) (Fig. 5E).

In the first step, we optimized each individual classifier to model the
training dataset as good as possible and in a second step selected the
classifier that maximized the Fl-score in the test dataset to select a
model that shows the lowest false positive rate (FPR) possible. Ran-
domForestClassifier is an ensemble learning method that creates a
multitude of decision trees during training but, importantly, corrects for
their overfitting to the training dataset. For the test dataset, our F1 score-
optimized RandomForest model had an F1-score of 76 % (configuration:
n_estimator+10, random state = 13, serum parameters scaled with
MinMaxScaler (Python: sklearn.preprocessing)) (Fig. S4A). With 89 %,
RandomForest had the best recall for control samples, which means that
false positive grouping of control subjects as lipedema patients took
place in 11 % of the predictions (Fig. 5E). SVM models are supervised
max-margin models with associated learning algorithms and known to
perform well with noisy data. Our F1-optimized SVM had an F1-score of
80 % (configuration: C = 1, degree = 2, gamma = “auto”, kernel="-
linear”, probability = True, random state = 42) (Fig. S4B). With the
highest overall accuracy of 80 % (Fig. S4B) and ROC area under the
curve of 0.86 (Fig. 5F), our SVM model was better at recalling lipedema
patients (81 %), but weaker at recalling controls (78 %) than Random-
Forest. ElasticNet is a regularized regression method that linearly
combines the penalties of both the lasso and ridge methods. With an
overall accuracy of 80 % in the test dataset, a ROC area under the curve
of 0.87 (Fig. 5F), and F1-score of 80 %, our Fl-optimized ElasticNet
correctly recalled 88 % of lipedema patients yet only 67 % of control
subjects (Fig. S4C).

One major problem is that we are missing an independent patient
cohort, which could function as a validation dataset. A method
commonly used to circumvent this problem is called cross-validation
(CV), which splits the training dataset into k-folds. To this end, we
chose a 5-fold (k = 5) cross validation (Python: sklearn.model_selection.

cross_val_score), which means the model was trained using 4 folds and
was validated on the last remaining fold. While cross-validation clearly
identifies our ElasticNet as an unreliable prediction tool with a CV mean
=+ SD value of 0.29 + 0.12, our RandomForest and SVM performed much
better with respective CV mean + SD values of 0.69 + 0.11 and 0.78 +
0.05 (Fig. 5F).

One can calculate feature importance by permutating the feature
columns (different serum parameters) and scoring how much of the
predictive power is lost. According to the permutation importance test,
RandomForest and SVM both have 31 features with a positive permu-
tation coefficient, while ElasticNet mainly bases its prediction on 6
serum parameters (Fig. 5G). To summarize, key metabolic serum
signature could be identified for lipedema patients and two of three
models could be benchmarked as good serum-based lipedema prediction
tools.

3. Discussion

In this study, we provide the first comprehensive, unbiased, multi-
omics-based systems biology approach to lipedema characterization
and diagnosis. By integrating transcriptomic, proteomic, metabolomic,
and lipidomic data from a patient cohort of unprecedented size, we
define several molecular hallmarks of lipedema and contribute disease
prediction models based on serum factor measurements.

A recent family-based study demonstrates genetic heterogeneity in
lipedema development, arguing against a single causative exomic factor
[35]. In line with this, no reliable genetic test exists for the diagnosis of
lipedema. Previous lipedema prediction models were based on the
quantification of pain levels [3] or circulating amino acid levels [36]. In
the former case [3], it must be acknowledged that pain levels are sub-
jective and can be influenced by unrelated physiological and psycho-
logical processes. In the latter case [36], the utilized control groups may
not have been properly matched, exacerbating the apparent predictive
power of the model. We present 3 distinct serum factor measurement-
based lipedema prediction models (sSLPM) with good accuracies. We
trained our models on all lipedema stages and irrespective of meno-
pausal status to create the most widely applicable prediction tool.
Placing the performance of our sLPM into perspective, serum
measurement-based or clinical parameter-based prediction models have
been tested across multiple diseases other than lipedema with similar
Fl-scores, control group recall values, and accuracies [37]. Further
improvements and validation of the models using independent patient
cohorts of multiple study centers would be important before it could be
used in the clinics. However, the inaccuracies of the prediction tool
could also be caused by lipedema being a disease category that combines
distinct disease subgroups that differ at the molecular level.

Even on basic disease parameters, a consensus remains to be found
for lipedema. Some investigators have reported adipocyte hypertrophy
to be a hallmark of the disease [38], whereas others claim adipocyte
hyperplasia to be more prevalent [39]. Adipocyte diameter appears to
have a direct impact on adipokine secretion and is an important
parameter when judging the healthiness of adipose tissue [40,41].
Adiponectin secretion increases with adipocyte hyperplasia, while
adipocyte hypertrophy decreases adiponectin secretion and increases
leptin secretion in turn [42]. Previous reports of elevated circulating
adiponectin levels in lipedema may be explained by group differences in
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Fig. 4. Lipedema serum measurements indicate mostly unchanged systemic cytokine and chemokine levels, but a trend towards increased VEGFA, decreased

glutamic acid, and increased methionine sulfoxide levels.

(A-B) Bar graphs of serum cytokines and chemokines in lipedema stage 1 patients (L1, n = 12) and control subjects (C, n = 13), menopausal women were excluded.
Factors were grouped by abundance: low abundance (A), medium abundance (B). (C-R) ANCOVA of serum amino acids and glutathione species with ‘age’ and ‘BMI’
as covariates and ‘menopausal status’ as an independent variable in control subjects (C, n = 49), lipedema stage 1 patients (L1, n = 14), lipedema stage 2 patients (L2,
n = 33), and lipedema stage 3 patients (L3, n = 25). (C—N) Bar graphs of serum amino acids. (O) Volcano plot of serum amino acids. Dotted line indicates FDR <
0.05. (P-R) Bar graphs of serum glutathione species and glutathione (GSH)/oxidized glutathione (GS-SG) ratio. Statistics: (A-B) Displayed as mean + SEM; analyzed
by one-way ANOVA. *, p < 0.05. (C-R) Displayed as mean (bar graphs); analyzed by ANCOVA (Python: statsmodels.formula.api.smf.OLS), multiple comparison
correction with FDR Benjamini-Hochberg method (Python: statsmodels.stats.multitest.multipletests method=‘fdr_bh’). p-values and FDRs are given as label where

either is significant.

<

Table 2

Multivariate Analysis of Covariance (MANCOVA) of serum amino acids with
‘age’ and ‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and
‘menopausal status’ as independent, categorical variables (related to Fig. 4).

Table 3

Multivariate Analysis of Covariance (MANCOVA) of serum glutathione species
with ‘age’ and ‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and
‘menopausal status’ as independent, categorical variables (related to Fig. 4).

Value Num DF Den DF F Value Pr>F Value Num DF Den DF F Value Pr>F
Intercept Intercept
Wilks' lambda 0.1331 31 83 17.437 0.0000 Wilks' lambda 0.0400 5 109 523.8208  0.0000
Pillai's trace 0.8669 31 83 17.437 0.0000 Pillai's trace 0.9600 5 109 523.8208  0.0000
Hotelling-Lawley trace 6.5126 31 83 17.437 0.0000 Hotelling-Lawley trace ~ 24.0285 5 109 523.8208  0.0000
Roy's greatest root 6.5126 31 83 17.437 0.0000 Roy's greatest root 24.0285 5 109 523.8208 0.0000
C (condition) C (condition)
Wilks' lambda 0.6010 31 83 1.7776 0.0205 Wilks' lambda 0.8185 5 109 4.8333  0.0005
Pillai's trace 0.3990 31 83 1.7776 0.0205 Pillai's trace 0.1815 5 109 4.8333  0.0005
Hotelling-Lawley trace 0.6639 31 83 1.7776 0.0205 Hotelling-Lawley trace 0.2217 5 109 4.8333  0.0005
Roy's greatest root 0.6639 31 83 1.7776 0.0205 Roy's greatest root 0.2217 5 109 4.8333  0.0005
C (menopausal status) C (menopausal status)
Wilks' lambda 0.7524 31 83 0.8809 0.6459 Wilks' lambda 09217 5 109 1.8525  0.1086
Pillai's trace 0.2476 31 83 0.8809 0.6459 Pillai's trace 0.0783 5 109 1.8525  0.1086
Hotelling-Lawley trace 0.3290 31 83 0.8809 0.6459 Hotelling-Lawley trace 0.0850 5 109 1.8525  0.1086
Roy's greatest root 0.3290 31 83 0.8809 0.6459 Roy's greatest root 0.0850 5 109 1.8525 0.1086
BMI BMI
Wilks' lambda 0.4134 31 83 3.7988 0.0000 Wilks' lambda 09012 5 109 2.3895  0.0425
Pillai's trace 0.5866 31 83 3.7988 0.0000 Pillai's trace 0.0988 5 109 2.3895  0.0425
Hotelling-Lawley trace 1.4188 31 83 3.7988 0.0000 Hotelling-Lawley trace 0.1096 5 109 2.3895  0.0425
Roy's greatest root 1.4188 31 83 3.7988 0.0000 Roy's greatest root 0.1096 5 109 2.3895 0.0425
Age Age
Wilks' lambda 0.6121 31 83 1.6967 0.0302 Wilks' lambda 0.9283 5 109 1.6836  0.1446
Pillai's trace 0.3879 31 83 1.6967 0.0302 Pillai's trace 0.0717 5 109 1.6836 0.1446
Hotelling-Lawley trace 0.6337 31 83 1.6967 0.0302 Hotelling-Lawley trace 0.0772 5 109 1.6836  0.1446
Roy's greatest root 0.6337 31 83 1.6967 0.0302 Roy's greatest root 0.0772 5 109 1.6836 0.1446

average adipocyte size and/or overall adipose tissue mass [43].
Appropriate matching of the study cohort is vital for meaningful ana-
lyses. In general, we matched our study subjects by multiple parameters.
The disruption of adipocyte function in lipedema was most apparent
when correlating adiponectin and leptin levels with BMI separately for
each lipedema stage and when taking the menopausal status into ac-
count. In addition, we found that menopause covers up parts of
lipedema-associated changes in serum ceramide and sphingolipid spe-
cies. This hints at estrogen potentially playing a role in shaping the
lipedema phenotype in the local adipose tissue environment, as well as
on the systemic ceramide metabolism level. This is one of the first mo-
lecular findings to support the long-hypothesized role of sex hormones
in lipedema development [12].

Our observations of disrupted adipokine secretion indicate that ad-
ipose tissue function is affected from early on in lipedema development
at stage 1. Analyzed across all stages, lipedema patients displayed
increased adiponectin in serum, which coincided with distinct changes
in different lipid species, including lactosyl- and hexosyl-ceramides. The
elevated levels of these specific lipid species could be a consequence of
either increased glucosylceramide synthase or decreased glucosylcer-
amidase activity. Adiponectin receptors (ADIPORs) display ceramidase
activity [44,45]. Thus, higher adiponectin levels should result in overall
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lower ceramide levels, which was not the case in our lipedema patients.
Either lipedema is accompanied by adiponectin resistance, or ceramides
are generated faster than they can be degraded, hence a compensatory
upregulation of the adiponectin/AdipoR axis as a compensatory
mechanism.

Elevated serum ceramide levels are widely considered to be associ-
ated with negative health outcomes [31,46]. Ceramide C22:0, C20:0,
and C18:0 correlate negatively with adiponectin levels and positively
with HOMA-IR, BMI z-score, as well as triglyceride and fasting blood
glucose levels [47]. In addition, a negative correlation between cer-
amide C16:0 and circulating adiponectin was reported [48]. Ceramides
and sphingoid bases are important metabolic messengers that also
contribute to regulation of apoptosis, oxidative stress, and the immune
response [49,50], as highlighted by the use of the sphingosine analogue
fingolimod for multiple sclerosis treatment [51]. Glycosylceramides are
suggested to activate immune cell function, for example through LPS/
TLR4 complex orientation [52,53]. Related to LPS/TLR4 signaling, we
recently proposed the accumulation of bacterial LPS in gluteofemoral
adipose tissue to be a driving force of lipedema development [54]. While
we could not measure these parameters in our lipedema serum samples,
our findings related to changes in complement and coagulation path-
ways are in agreement with this hypothesis.
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Fig. 5. Lipedema serum measurements indicate changes in ceramide and sphingolipid metabolism and serum lipid measurements can be used to build accurate

lipedema prediction models.

The following groups were analyzed: C, control subjects (n = 49); L, lipedema stage 1-3 patients (n = 72). (A-D) ANCOVA of serum lipids and adipokines with ‘BMI’
as a covariate (A), ‘age’ as a covariate (B), ‘BMI’ and ‘age’ as covariates (C), or ‘BMI’ as a covariate and ‘menopausal status’ as an independent variable (D). Volcano
plots are provided. Dotted lines indicate FDR < 0.05. (E-G) Benchmarking of three distinct supervised learning methods: RandomForest, Support Vector Machine
(SVM), and ElasticNet. Confusion Matrices (E) and Receiver Operating Characteristic (ROC) curves (F) of the different serum factor measurement-based lipedema
prediction models (sSLPM) are given. Analyzed data was adjusted for age. (G) Permutation Feature Importance depicted as vertical bar graphs. Statistics: (A-D)
Analyzed by ANCOVA (Python: statsmodels.formula.api.smf.OLS), multiple comparison correction with FDR Benjamini-Hochberg method (Python: statsmodels.stats.
multitest.multipletests method=‘fdr_bh’). (E) Confusion Matrices (Python: sklearn.metrics.confusion_matrix). (F) Receiver Operating Characteristic curves (Python:
sklearn.metrics.roc_curve). (G) Cross-Validation (Python: sklearn.model_selection cross_val_score) and Permutation Feature Importance (Python: sklearn.inspection.

permutation_importance). Displayed as mean + SD.

Table 4

Multivariate Analysis of Covariance (MANCOVA) of serum lipids with ‘age’ and
‘BMI’ as continuous covariates and ‘condition’ (C, L1, L2, L3) and ‘menopausal
status’ as independent, categorical variables (related to Fig. 4).

Value Num DF Den DF F Value Pr>F
Intercept
Wilks' lambda 0.0291 49 68 46.2259 0.0000
Pillai's trace 0.9709 49 68 46.2259 0.0000
Hotelling-Lawley trace 33.3099 49 68 46.2259 0.0000
Roy's greatest root 33.3099 49 68 46.2259 0.0000
C (condition)
Wilks' lambda 0.1666 50 67 6.7046 0.0000
Pillai's trace 0.8334 50 67 6.7046 0.0000
Hotelling-Lawley trace 5.0034 50 67 6.7046 0.0000
Roy's greatest root 5.0034 50 67 6.7046 0.0000
C (menopausal status)
Wilks' lambda 0.2472 50 67 4.0814 0.0000
Pillai's trace 0.7528 50 67 4.0814 0.0000
Hotelling-Lawley trace 3.0458 50 67 4.0814 0.0000
Roy's greatest root 3.0458 50 67 4.0814 0.0000
BMI
Wilks' lambda 0.0986 50 67 12.2479 0.0000
Pillai's trace 0.9014 50 67 12.2479 0.0000
Hotelling-Lawley trace 9.1402 50 67 12.2479 0.0000
Roy's greatest root 9.1402 50 67 12.2479 0.0000
Age
Wilks' lambda 0.1775 50 67 6.2074 0.0000
Pillai's trace 0.8225 50 67 6.2074 0.0000
Hotelling-Lawley trace 4.6324 50 67 6.2074 0.0000
Roy's greatest root 4.6324 50 67 6.2074 0.0000

Adipocyte hypertrophy is commonly associated with an infiltration
of immune cells and the establishment of a pro-inflammatory environ-
ment in adipose tissue [55]. Clinicians report that the adipose tissue of
lipedema patients feels softer than that of control subjects [1]. Changes
in extracellular matrix (ECM) composition and organization contribute
to stiffening of a fibrotic tissue, which often is the result of cyclic
inflammation. Fibrosis can be understood as a pathologic form of wound
healing that leads to excessive ECM deposition and tissue scarring [56].
Lipedema disease gene pathways and their protein components are still
unknown. Only a few reports on the diseased adipose tissue tran-
scriptome have been published [39,57,58]. To our knowledge, this is the
first study to indicate that lipedema coincides most strongly with
increased gene and protein signatures of cell respiration, mitochondrial
function, and oxidative phosphorylation as well as decreased signatures
of immune effector processes and complement and coagulation cas-
cades. In contrast to our findings, several previous reports suggested that
increased inflammation would be a hallmark of lipedema adipose tissue
[57-62]. Based on our data, we now hypothesize that the exclusion of
immune cells from subcutaneous lipedema adipose tissue or the sup-
pression of their activity is a key hallmark of the disease. Signs of
reduced complement activation and diminished coagulation could be
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interpreted as further evidence supporting the notion of a local sup-
pression of the immune response [63,64]. In fact, we recently proposed
that an endotoxin-complement cascade may play an integral role in the
regulation of adipocyte cellularity and that reduced complement activ-
ity may be at the very source of the adipose tissue expansion in lipedema
patients [65]. That the complement and coagulation pathways show up
in the top 11 most affected proteomic but not transcriptomic pathways is
to be expected, because the process of coagulation is primarily regulated
on the protein level [54,66]. During the progression from early stages of
lipedema to a more chronic manifestation of the disease pronounced
adipose tissue damage accumulates. At stage 3 and in individuals that
develop excessive fibrosis, damage to the adipose tissue may advance
lymphedema development [28]. Importantly, lymphedema certainly
induces immune cell infiltration [67]. We thus suggest that immune cell
infiltration may occur as a consequence of co-occurring lymphedema,
while our transcriptomic data questions its causative role in lipedema
development and maintenance.

Adipose tissue pressure pain is a prevalent observation in lipedema
patients [3]. Although pain levels were not assessed in this study, gene
and protein signatures were found in lipedema patients that are con-
nected to neurodegeneration. Future clinical lipedema studies should
combine pain level measurements with multi-omics approaches.

Our measurements of circulating amino acid levels in lipedema pa-
tients led to another key finding, reduced glutamic acid levels. Previous
reports on changes in pyruvic acid, phenylalanine, and histidine levels
were however not confirmed [36]. The observed changes in glutamic
acid levels and associated metabolic processes may constitute a link
between metabolic dysfunction and reduced inflammation in lipedema
adipose tissue. In tendon injury models, glutamate was found to regulate
mast cell function [68]. Glutamic acid is crucial for basic immune cell
functions, including lymphocyte proliferation and cytokine production,
macrophage phagocytic and secretory activities, and neutrophil bacte-
rial killing [69]. As such, clinical nutritional protocols for pre- and post-
operative treatment unrelated to lipedema include glutamic acid sup-
plementation [70,71]. The glutamine dipeptides L-alanyl-i-glutamine
(Ala-Gln), cleaved by human plasma amino peptidases, is the most
suitable precursor of glutamic acid for nutritional supplementation [71].
Future clinical research with glutamine dipeptide supplementation of
lipedema patients could investigate this potential link between meta-
bolic and immune functions, potential in combination with liposuction
surgery. There is indeed a pressing need for studying the response of
individual lipedema symptoms to more common forms of therapy [12].
Immune-modulating drug and anti-histamine trials in women with
lipedema, as identified as a priority by the Lipedema Foundation, are not
supported by our finding that adipose tissue inflammation is actually
reduced in lipedema patients compared to properly-matched control
subjects.

To conclude, our multi-omics approach allows us to present
comprehensive molecular disease hallmarks. The high resolution of our
analysis allowed us to not only hypothesize gene ontology pathways, but
also discover genes and proteins previously unrelated to lipedema dis-
ease ontology and manifestation. Focusing on these molecular links
could be instrumental to develop new lipedema treatment strategies.
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3.1. Limitations of the study

Because this study is cross-sectional, we cannot draw firm conclu-
sions regarding the contribution of specific factors and processes we
identified to lipedema development and maintenance. For the analysis
of disease pathway overlap, we chose to include patients from all lipe-
dema stages in these analyses to discover candidate mechanisms that
sustain lipedema, potentially biasing against mechanisms involved in
early-stage lipedema development. Due to study-inherent challenges in
collecting sufficient adipose tissue samples from all participants, our
proteomic and transcriptomic analyses were performed not in one and
the same subgroup, but in two overlapping subgroups that were sampled
from the larger study cohort. In detail, only 5 of the respective 12 in-
dividuals analyzed by proteomics were overlapping. This could have
increased data variability, especially when comparing proteomic and
transcriptomic changes. We are sharing our proteomic and tran-
scriptomic primary data hoping that doing so will allow other re-
searchers to add our data to their own analyses. To reach higher levels of
accuracy and further test our new lipedema prediction models, addi-
tional multi-center patient samples and data will need to be integrated.
In addition, we caution that additional validation datasets are important
to estimate the clinical robustness of the lipedema prediction tools that
we provide.

4. Methods
4.1. Participants

All women gave written informed consent before enrolling in a study
approved by the University of Arizona Human Research and Protection
Program [28]. This manuscript describes the lipedema portion of that
cross-sectional clinical study (NCT02838277), which took place be-
tween June 2016 and October 2019. Further details can be found at cl
inicaltrial.gov (https://clinicaltrials.gov/ct2/show/NCT02838277).
The Human Subjects Protection Program (HSPP), as the administrative
and regulatory support program to the Institutional Review Boards
(IRBs), works in collaboration with the research community to maintain
an ethical and compliant research program. An IRB reviewed all
research and related activities involving human subjects conducted
during this study. The University of Arizona HSPP has been accredited
by the Association for Accreditation of Human Research Protection
Programs (AAHRPP) since 2005. No harm was inflicted on the partici-
pants as part of the study.

4.1.1. Inclusion criteria

Ambulatory males and/or females able to understand the consent
process; of any race; 19-70 years of age; diagnosis of lipedema; in-
dividuals without a fat disorder (will be matched by age, sex, race, and
body mass index); weight stable for past 3 months within a 10 pound
range per personal report of the subject; overweight or obese with BMI
>26 kg/m? in order to be able to get enough subcutaneous adipose tissue
for the biopsy; individuals with BMI <26 kg/m? may participate in all
aspects of the study protocol except the subcutaneous adipose tissue
biopsy; thyroid levels in the normal range as confirmed by a TSH mea-
surement; may have treated hypothyroidism that is stable over 6
months.

4.1.2. Exclusion criteria

HIV infection (because of the associated lipodystrophy and fatty
growths [lipomas]); subjects will be excluded from having a subcu-
taneous adipose tissue biopsy with any history of scleroderma, keloid
formation, or other skin condition that would result in substantial
scarring after biopsy; a history of recurrent cellulitis; other adipose tis-
sue diseases (e.g. Dercum's disease, Familial Multiple Lipomatosis, or
Madelung's disease); any history of bleeding diathesis that would place
the subject at great risk for persistent bleeding after a biopsy/
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liposuction; any history of major complication after a previous biopsy
including requirement of a blood transfusion, hospitalization, failure to
heal, or major infection requiring intravenous antibiotics, or anyone
whose skin and tissue would put them at risk for an infection after the
biopsy per the assessment of study staff and the principal investigator;
these individuals may participate in the remainder of the protocol, just
not the subcutaneous adipose tissue biopsy; use of any immunosup-
pressant or corticosteroid medication; use of any anti-inflammatory
medication such as NSAIDs, aspirin, histamine (H) 1 blocker, H2
blocker, tetracycline, or corticosteroids within five days of the study
procedure visit; use of medications that might cause weight gain (e.g.
second generation anti-psychotics); blood donation <56 days prior to
screening visit; tobacco or marijuana use which may alter inflammation
in the body; any antibiotics within the last month, barium enema in the
last week which would affect gut bacteria and the MRI; pregnancy due to
the risks associated with the fat biopsy in the area of the fetus and
because pregnancy will alter hormone levels; women without lipedema
were matched by age and body mass index (BMI) to women with lipe-
dema as a comparison group.

Initial matching during recruitment phase was done using MedCalc
Statistical Software (MedCalc Software Ltd., Ostend, Belgium). Adjust-
ments for BMI and/or age were implemented by multivariate regression
analysis (ANCOVA or MANCOVA). Women were considered to be obese
if their BMI was >30kg/m?. Participant's information on sex (assigned
at birth), age, and race was self-reported. Information on gender and
socioeconomic status was not collected. For reasons of statistical strin-
gency only women with lipedema stages 1 to 3 and female control
subjects were considered for the analyses. Heterogeneity in race was
allowed for all groups, but mostly white women participated in the
study. The number of subjects does not allow for subgrouping for dif-
ferences in race. Two participants were excluded for missing key an-
thropometrics data. Additionally, subgrouping was done according to
the menopausal status of women. Throughout the clinical study, we
abided by the principles of WMA's Declaration of Helsinki as revised in
2013.

4.2. Biopsies

From January 2017 to October 2019, clean subcutaneous adipose
tissue samples without skin were taken from underneath a 5 mm punch
biopsies at the thigh and/or abdomen of women with and without
lipedema. Serum was collected as well.

4.3. RNA sequencing analysis

RNA was isolated from human adipose tissue with TRIzol reagent
(Invitrogen, #15596026) according to the manufacturer's instructions.
Total RNA was submitted to Novogene, where quality control and li-
brary preparation as well as sequencing was done as described in brief in
the following. RNA libraries were build following poly(A) capture and
reverse transcription to create cDNA fragments of 150 bp. According to
Novogene, paired-end sequencing was performed on a Illumina Novo-
Seq platform. RNA sequencing primary data was deposited at htt
ps://www.ncbi.nlm.nih.gov/sra ~ with  the  dataset identifier
PRJNA940039. RNA sequencing results stored in the Fastq files were
analyzed using the BICF RNASeq Analysis Workflow (Version pub-
lish_0.5.15 - https://git.biohpc.swmed.edu/BICF/Astrocyte/rnaseq) of
the UT Southwestern Astrocyte Workflow System. In short, this pipeline:
(1) trims the ends of sequences with remaining adapter or quality scores
<25 and removes any sequence <35 bp after trimming, (2) aligns
trimmed Fastq files to the human reference genome (GRCh38) using
HiSAT2, 3) Marks duplicates using SAMBAMBA, 4) counts features
(genes, transcripts, and exons) using FeatureCounts and StringTie using
the Gencode feature table, 5) performs basic pairwise differential
expression analysis using EdgeR and DESeq, and 6) calculates abun-
dances of transcripts using ballgown. Significantly regulated genes were
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assessed by Bonferroni multiple comparison corrected p-value<0.05.
Metascape [21] was used to perform tissue and cell type representation
(PaGenBase), pathway enrichment (GO and KEGG), and transcription
factor enrichment (TRRUST) analyses.

4.4. Metabolomics (sphingolipids, free amino acids, and sulfatides)

Mass spectrometry-based analyses were performed at the UT
Southwestern Metabolic Phenotyping Core mass spectrometry facility.

4.4.1. Sphingolipids were extracted from serum samples as follows

50 pl of serum were added to 4.0 ml organic extraction solvent
(isopropanol:ethyl acetate, 15:85; v:v). Immediately afterward, 20 pl
internal standard solution was added (Ceramide/Sphingoid Internal
Standard Mixture II at a 10 fold dilution in methanol combined with a
mixture of C16 ceramide-d7 (d18:1-d7/16:0), C18 ceramide-d7 (d18:1-
d7/18:0), C24 ceramide-d7 (d18:1-d7/24:0), and C24:1 ceramide-d7
(d18:1-d7/24:1(15Z)) at a concentration of 2.4 pM; Avanti Polar
Lipids, Alabaster, AL). The mixture was vortexed and 3.0 ml of HPLC
water was added. Two-phase liquid extraction was performed, the su-
pernatant was transferred to a new tube, and the aqueous phase was re-
extracted. Supernatants were combined and evaporated under nitrogen.
The dried residue was reconstituted in 200 pl of MeOH. Sphingolipid
profiling was conducted by liquid chromatography-electrospray ioni-
zation-tandem mass spectrometry (LC-MS/MS), using a Nexera X2
UHPLC coupled to an LCMS-8060 (Shimadzu Scientific Instruments,
Columbia, MD, USA). 3 pl and 1 pl of sample was injected for the
analysis of sphingoid bases and ceramides, and sphingomyelins,
respectively and the autosampler was kept at 9 °C during the duration of
the batch analysis. Lipid separation was achieved by reverse-phase
liquid chromatography on a 2.1 x 150 mm, 2.7 pm Ascentis Express
C8 HPLC column (Supelco, Bellefonte, PA) using a gradient elution with
H>0 5 mM ammonium formate 0.8 % formic acid (v/v) and MeOH 5 mM
ammonium formate 0.8 % formic acid (v/v).

4.4.2. Free amino acids were extracted from serum as follows

15 pl of serum was added to 170 pl of 85 % MeOH (v/v). Immediately
afterwards 20 pl of the internal standard cocktail was added. The in-
ternal standard cocktail mixture was prepared by mixing 100 pl of
Labeled Amino Acids Standards Set Al (Cambridge Isotope Labora-
tories, Inc., Tewksbury, MA), 50 pl of Metabolomics Amino Acids Mix
Standard (Cambridge Isotope Laboratories, Inc.), 152 pl of an aqueous
solution of 3-methyluric acid-2,4,5,6-13C4,1,3,9-15 N3 (99% atom %
13C, 98 atom % 15 N, 97 % (CP); Sigma-Aldrich, St Louis, MO) at a
concentration of 0.5 mg/ml, the internal standard solution was diluted
with HPLC water to a final volume of 4.0 ml. The samples were vortexed
for 30 s and centrifuged in a benchtop micro centrifuge for 10 min at
17,000g, 4 °C. Supernatant was then transferred to a low absorption
polypropylene autosampler vials. Samples were analyzed on a Nexera
X2 UHPLC system coupled to an LCMS-8060 triple quadrupole mass
spectrometer (Shimadzu Scientific Instruments). 2 pl were injected onto
the analytical system and the autosampler was kept at 4 °C during the
duration of the batch analysis. Free amino acids were analyzed using the
mass spectrometry parameters and chromatographic conditions
described in the Shimadzu LC/MS/MS Method Package for Cell Culture
Profiling. The method was edited to include stable isotope labeled free
amino acids internal standards SRM transitions.

4.4.3. Sulfatides were extracted and purified from serum samples as follows

150 pl of serum was added to 6.0 ml organic extraction solvent
(isopropanol:ethyl acetate, 15:85; v:v). Immediately afterward, 20 pl
internal standard solution was added (C18:8 mono-sulfo galactosyl(f)
ceramide-d3 d18:1-d3/18:0) at a concentration of 10 pg/ml (Matreya,
State College, PA) and 150 pl of acetic acid. The mixture was vortexed
and 4.5 ml of HPLC water was added. Two-phase liquid extraction was
performed, the supernatant was transferred to a new tube, and the pellet
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was re-extracted. Supernatants were combined and evaporated under
nitrogen. Next, 100 pl of 1 M MeOLi in MeOH was added to the dried
residues, vortex mixed for 15 s and kept on ice for one hour, vortexed
again for 15 s and incubated on ice for another hour. The reaction was
then quenched by adding 2.0 mL of aqueous AcOH (0.8 %; v:v). Next,
4.0 ml of Hexane was added, and a 2-phase extraction was performed to
eliminate interferences free fatty acids (two cycles). The top organic
layer was discarded and the bottom aqueous phase was reextracted (two
cycles) with 4.0 ml isopropanol:ethyl acetate (15:85; v:v). Organic ex-
tracts were combined and dried under nitrogen. The dried residue was
reconstituted in 200 pl of MeOH. 15 pl of reconstituted extract were
injected into the analytical system with co-injection of 10 pl of water.
The autosampler was kept at 4 °C during the duration of the batch
analysis. Sulfatide species profiling was conducted by liquid
chromatography-electrospray ionization-tandem mass spectrometry in
negative mode, using a Nexera X2 UHPLC coupled to an LCMS-8060
(Shimadzu Scientific Instruments). Lipid separation was achieved by
reverse-phase liquid chromatography on a 2.1 x 50 mm, 1.9 pm Shi-
madzu C18 HPLC column (Shimadzu Scientific Instruments) using a
gradient elution with HoO/MeCN (1:1; v:v) 0.1 % formic acid and IPA/
MeCN (80:20; v:v) 0.1 % formic acid. This is a semiquantitative method,
the relative abundance of sulfatide species are determined based on the
peak area ratio with respect to the internal standard. A solution of brain
sulfatides at a concentration of 20 pg/ml (Avanti Polar lipids) and
sphingosine-1-galactoside-3-sulfate at a concentration of 1 pg/ml (lyso-
sulfatide ammonium salt, Matreya) was used to optimize analytical
parameters, and retention time determination.

LabSolutions V 5.114 and LabSolutions Insight V 3.8 SP4 program
packages were used for mass spectrometry data processing (Shimadzu
Scientific Instruments).

4.5. Proteomics

Mass spectrometry-based proteomic data was deposited to the Pro-
teomeXchange Consortium via the PRIDE partner repository with the
dataset identifiers PXD058489 and https://doi.org/10.6019/
PXD058489.

4.5.1. Adipose tissue homogenization

Approximately 50 mg of frozen thigh adipose tissue biopsies were
homogenized on ice using a Brinkman Homogenizer (Model PT 10/35)
in 300 pl detergent-containing lysis buffer A (50 mM HEPES, pH 7.6,
150 mM NaCl, 20 mM NaPOg, 20 mM beta-glycerophosphate, 10 mM
NaF, 2 mM NaVanadate, 2 mM EDTA, 1 % Triton-X100, 10 % glycerol, 2
mM PMSF, 1 mM MgCl,, 1 mM CaCl,, 10 pg/ml leupeptin, 10 pg/ml
aprotinin). Biopsies were homogenized until no visible tissue remained,
approximately 3 x 10 second pulses. Adipose tissue lysates were then
incubated on ice for 20 min followed by centrifugation for 20 min at
14,000g, 4 °C. Protein concentration was determined using a Pierce BCA
protein assay kit (Thermo Scientific, #23225). The protein concentra-
tion averaged approximately 3.5 pg/pl.

4.5.2. In-gel digestion

80 pg of clarified homogenized adipose tissue lysate were separated
on a 10 % SDS-PAGE gel and stained with Bio-Safe Coomassie G-250
Stain. Tryptic digestion and desalting were performed as described [72].
In brief, each lane of the SDS-PAGE gel was cut into eight slices, placed
in a 0.6 ml LoBind polypropylene tube (Eppendorf), destained twice
with 375 pl of 50 % acetonitrile (ACN) in 40 mm NH4HCOs3 and dehy-
drated with 100 % ACN for 15 min. After removal of the ACN by aspi-
ration, the gel pieces were dried in a vacuum centrifuge for 30 min at
60 °C. Trypsin (250 ng; Sigma-Aldrich) in 20 pl of 40 mM NH4HCO3 was
added and the samples were maintained for 15 min at 4 °C prior to the
addition of 50-100 pl of 40 mM NH4HCO3. The digestion was allowed to
proceed at 37 °C overnight and was terminated by addition of 10 pl of 5
% formic acid (FA). After further incubation for 30 min at 37 °C and
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centrifugation for 1 min, each supernatant was transferred to a clean
LoBind polypropylene tube. The extraction procedure was repeated
using 40 pl of 0.5 % FA and the two extracts were combined and dried
down to approximately 5-10 pl followed by the addition of 10 pl 0.05 %
heptafluorobutyric acid:5 % FA (v/v) and incubation at room tempera-
ture for 15 min. The resulting peptide mixtures were loaded on a solid
phase C18 ZipTip (Millipore, Billerica, MA) and washed with 35 pl
0.005 % heptafluorobutyric acid:5%FA (v/v) followed by elution first
with 4 pl of 50 % ACN:1 % FA (v/v) and then a more stringent elution
with 4 pl of 80 % ACN:1 % FA (v/v). The eluates were combined and
dried completely by vacuum centrifugation and 6 pl of 0.1 % FA (v/v)
was added followed by sonication for 2 min. 2.5 pl of the final sample
was then analyzed by mass spectrometry.

4.5.3. Mass spectrometry and database search

HPLC-ESI-MS/MS was performed in positive ion mode on a Thermo
Scientific Orbitrap Fusion Lumos tribrid mass spectrometer fitted with
an EASY-Spray Source (Thermo Scientific) as previously described [73].
In brief, NanoLC was performed using a Thermo Scientific UltiMate
3000 RSLCnano System with an EASY Spray C18 LC column (Thermo
Scientific, 75 cm x 75 pm inner diameter, packed with PepMap RSLC
C18 material, 2 pm, #ES805); loading phase for 15 min at 0.300 pl/min;
mobile phase, linear gradient of 1-34 % Solvent B in 119 min at 0.220
pl/min, followed by a step to 95 % Buffer B over 4 min at 0.220 pl/min,
hold 5 min at 0.250 pl/min, and then a step to 1 % Buffer B over 5 min at
0.250 pl/min and a final hold for 10 min (total run 159 min); Buffer A =
0.1 % FA/H20; Buffer B = 0.1 % FA in 80 % ACN. All solvents were
liquid chromatography mass spectrometry grade. Spectra were acquired
using XCalibur (version 2.3; Thermo Scientific). A “top speed” data-
dependent MS/MS analysis was performed. Dynamic exclusion was
enabled with a repeat count of 1, a repeat duration of 30 s, and an
exclusion duration of 60 s. Tandem mass spectra were extracted from
Xcalibur ‘RAW’ files and charge states were assigned using the Proteo-
Wizard 3.0 msConvert script using the default parameters. The fragment
mass spectra were then searched against the human SwissProt_ 2018
database (20,413 entries) using Mascot (version 2.6.0; Matrix Science)
using the default probability cut-off score. The search variables that
were used were: 10 ppm mass tolerance for precursor ion masses and
0.5 Da for product ion masses; digestion with trypsin; a maximum of two
missed tryptic cleavages; variable modifications of oxidation of methi-
onine and phosphorylation of serine, threonine, and tyrosine. Cross-
correlation of Mascot search results with X! Tandem was accom-
plished with Scaffold (version Scaffold 4.8.2; Proteome Software).
Probability assessment of peptide assignments and protein identifica-
tions were made through the use of Scaffold. Only peptides with >95 %
probability were considered.

4.5.4. Label-free quantitative proteomics

Progenesis QI for proteomics software (version 2.4; Nonlinear Dy-
namics Ltd.) was used to perform ion-intensity based label-free quanti-
fication as previously described [74]. In brief, in an automated format,
raw files were imported and converted into two-dimensional maps (y-
axis = time, x-axis = m/z) followed by selection of a reference run for
alignment purposes. An aggregate data set containing all peak infor-
mation from all samples was created from the aligned runs, which was
then further narrowed down by selecting only +2, +3, and +4 charged
ions for further analysis. The samples were then grouped and a peak list
of fragment ion spectra from only the top eight most intense precursors
of a feature was exported in Mascot generic file (.mgf) format and
searched against the human SwissProt_2018 database (20,413 entries)
using Mascot (version 2.4; Matrix Science). The search variables that
were used were: 10 ppm mass tolerance for precursor ion masses and
0.5 Da for product ion masses; digestion with trypsin; a maximum of two
missed tryptic cleavages; variable modifications of oxidation of methi-
onine and phosphorylation of serine, threonine, and tyrosine; 13C = 1.
The resulting Mascot .xml file was then imported into Progenesis,
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allowing for peptide/protein assignment, while peptides with a Mascot
Ion Score of <25 were not considered for further analysis. Protein
quantification was performed using only non-conflicting peptides and
precursor ion-abundance values were normalized in a run to those in a
reference run (not necessarily the same as the alignment reference run).
Principal Component Analysis (PCA) and unbiased hierarchal clustering
analysis and accompanying heat map visualization was performed in
Perseus [75], while Volcano plots were generated in Python with Mat-
plotlib. Gene Ontology and KEGG pathway analyses were performed
with Metascape [21].

4.6. Serum analysis

Leptin (ALPCO, #11-LEPHU-EO01) as well as high molecular weight
and total adiponectin (ALPCO, #80-ADPHU-E01) were measured with
ELISA kits according to the manufacturer's instructions. Human Cyto-
kines and Chemokines (sCD40L, EGF, eotaxin, FGF2, FLT3 ligand,
fractalkine, G-CSF, GM-CSF, GROw, IFN«2, IFNy, IL1q, IL1p, IL1RA, IL2,
IL3, IL4, ILS5, IL6, IL7, ILS8, IL9, IL10, IL12p40, IL12p70, IL13, IL15,
IL17A, IL17E/IL25, IL17F, IL18, IL22, IL27, IP10, MCP1, MCP3, MCSF,
MDC (CCL22), MIG, MIP1a, MIP1p, PDGF-AA, PDGF-AB/BB, RANTES,
TGFa, TNFa, TNFB, VEGFA) were measured by Eve Technologies in their
Human Cytokine/Chemokine 48-Plex Discovery Assay (#HDA48).

4.7. Abbreviations

Gene (human reference genome (GRCh38)) and protein name ab-
breviations are following the HUGO gene nomenclature committee
recommendations (www.genenames.org)

4.8. Statistical analysis

In general, statistics were perfomed with Python (version 3.12.1).
Pearson correlation coefficient and p-value for correlation testing was
performed with the function scipy.stats.pearsonr. Two-sampled t-tests
(scipy.stats.ttest_ind), one-way ANOVAs (scipy.stats.f_ oneway) and two-
way ANOVAs (statsmodels.formula.api.ols, anova_lm(model, type = 2))
were used as indicated. Statsmodels (version 0.14.2) was used in Python.
sklearn.decomposition.PCA was used for Principal Component Analysis
(PCA). False Discovery Rate (FDR) was calculated to correct p-values for
multiple comparisons with the Benjamini-Hochberg method (statsmo-
dels.stats.multitest. multipletests method=‘fdr_bh’). Analysis of cova-
riane (ANCOVA) was performed with statsmodels.api.smf.OLS and
formulas f{dep_vars_tr} ~ C(Condition) + Age', f{dep_vars_str} ~ C
(Condition) + BMI, f{dep_vars_str} ~ C(Condition) + BMI + Age', or
f{dep_vars_str} ~ C(Condition) + BMI + Age + C(Menopause)'.

Multivariate analysis of covariance (MANCOVA) was performed
with statsmodels.multivariate.manova and formula f'{dep_vars_str} ~ C
(Condition) + BMI + Age + C(Menopause)'. MANCOVA statistical tests
Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, Roy's greatest root
were performed with statsmodels.multivariate.manova.MANOVA.
mv_test.

All  statistical information regarding Metascape (version
3.5.20240901) can be found online (www.metascape.org/gp/index.htm
1#/menu/release_history).

4.9. Machine learning

We implemented multiple supervised learning methods to generate a
classification prediction tool with Python (version 3.12.1). The
following Python libraries included in scikit learn (or sklearn; stable
version 1.4.2) were used: Support Vector Machine (SVM, sklearn.svm.
SVC), ElasticNet (Python: sklearn.linear_model.ElasticNet), Random
Forest (Python: sklearn.ensemble.RandomForestClassifier). The dataset
was first loaded into a pandas DataFrame and split into features and
target variables. We then divided the data into training (80 %) and
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testing (20 %) sets to evaluate the model's performance (Python:
sklearn.model_selection.train_test_split). Feature scaling was applied to
standardize the features, ensuring they have a mean of 0 and a standard
deviation of 1 (Python: sklearn.preprocessing.StandardScaler or Min-
MaxScaler). After training, the models were used to make predictions on
the test set. The performance of the model was assessed using metrics
such as accuracy, precision, recall, and the F1-score (Python: sklearn.
metrics.classification_report or confusion_matrix). For cross-validation
5-fold CV mean + SD was calculated (Python: sklearn.model selection.
cross_val_score). Feature importance was calculated using permutatio-
n_importance (Python: sklearn.inspection).

CRediT authorship contribution statement

Leon G. Straub: Writing - review & editing, Writing — original draft,
Visualization, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Funding acquisition,
Formal analysis, Data curation, Conceptualization. Jan-Bernd Funcke:
Writing — review & editing, Writing — original draft, Methodology, Data
curation, Conceptualization. Nolwenn Joffin: Writing — review &
editing, Writing — original draft, Methodology, Conceptualization.
Chanmin Joung: Writing - review & editing, Writing — original draft,
Methodology. Sara Al-Ghadban: Writing — review & editing, Writing —
original draft, Methodology, Formal analysis. Shangang Zhao: Writing
—review & editing, Writing — original draft, Formal analysis. Qingzhang
Zhu: Writing — review & editing, Writing — original draft, Methodology.
Ilja L. Kruglikov: Writing - review & editing, Writing — original draft,
Formal analysis. Yi Zhu: Writing - review & editing, Writing — original
draft, Formal analysis. Paul R. Langlais: Writing — review & editing,
Writing — original draft, Methodology, Formal analysis, Data curation.
Ruth Gordillo: Writing — review & editing, Writing — original draft,
Methodology, Formal analysis, Data curation. Karen L. Herbst: Writing
- review & editing, Writing — original draft, Supervision, Funding
acquisition, Data curation, Conceptualization. Philipp E. Scherer:
Writing - review & editing, Writing — original draft, Visualization,
Validation, Supervision, Resources, Project administration, Methodol-
ogy, Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

LGS was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) grant #444933586. The Lipedema
Foundation funded some of this work (Research Awards Program). This
research was supported in part by the computational resources provided
by the BioHPC supercomputing facility Department of Bioinformatics,
UTSWMC. We thank the UTSW Metabolic Core Unit for the sample
analysis and Shimadzu Scientific Instruments for the collaborative ef-
forts in mass spectrometry technology resources.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.metabol.2025.156191.

References

[1] Herbst KL, Kahn LA, Iker E, Ehrlich C, Wright T, McHutchison L, et al. Standard of
care for lipedema in the United States. Phlebology J Venous Dis 2021;36(779-96).
https://doi.org/10.1177,/02683555211015887.

16

[2]

[3]

[4]

[5]

(6]

[7

—

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

Metabolism 168 (2025) 156191

WOLD EAHJ LE, ALLEN EV. Lipedema of the legs: a syndrome characterized by fat
legs and edema. Ann Intern Med 1951;34. https://doi.org/10.7326/0003-4819-34-
5-1243.

Dinnendahl R, Tschimmel D, Léw V, Cornely M, Hucho T. Non-obese lipedema
patients show a distinctly altered quantitative sensory testing profile with high
diagnostic potential. PAIN Rep 2024;9. https://doi.org/10.1097/
pr9.0000000000001155.

Kruppa P, Georgiou I, Biermann N, Prantl L, Klein-Weigel P, Ghods M.
Lipedema—pathogenesis, diagnosis, and treatment options. Dtsch Arztebl Int 2020.
https://doi.org/10.3238/arztebl.2020.0396.

Forner-Cordero 1, Szolnoky G, Forner-Cordero A, Kemeny L. Lipedema: an
overview of its clinical manifestations, diagnosis and treatment of the
disproportional fatty deposition syndrome - systematic review. Clin Obes 2012;2
(86-95). https://doi.org/10.1111/j.1758-8111.2012.00045.x.

Eakin GS, Peterson S. Lipedema: A current understanding of its pathology and
natural history version 1-May 2023. 2023.

Peprah K, MacDougall D. Liposuction for the treatment of lipedema: a review of
clinical effectiveness and guidelines. Ottawa (ON). 2019.

Ghods M, Kruppa P. Surgical treatment of lipoedema. Handchir Mikrochir P 2018;
50:400-11. https://doi.org/10.1055/a-0767-6808.

Kruppa P, Georgiou I, Schmidt J, Infanger M, Ghods M. A 10-year retrospective
before-and-after study of lipedema surgery: patient-reported lipedema-associated
symptom improvement after multistage liposuction. Plast Reconstr Surg 2022;149:
529e-41e. https://doi.org/10.1097/Prs.0000000000008880.

Herbst KL, Hansen EA, Cobos Salinas LM, Wright TF, Larson EE, Schwartz JS.
Survey outcomes of lipedema reduction surgery in the United States. Plast Reconstr
Surg Global Open 2021;9. https://doi.org/10.1097/gox.0000000000003553.
Duhon BH, Phan TT, Taylor SL, Crescenzi RL, Rutkowski JM. Current mechanistic
understandings of lymphedema and lipedema: tales of fluid, fat, and fibrosis. Int J
Mol Sci 2022;23. https://doi.org/10.3390/ijms23126621.

Aday AW, Donahue PMC, Garza M, Crain VN, Patel NJ, Beasley JA, et al. National
survey of patient symptoms and therapies among 707 women with a lipedema
phenotype in the United States. Vasc Med 2023;29(36-41). https://doi.org/
10.1177/1358863x231202769.

Kruglikov IL, Scherer PE. Control of adipose tissue cellularity by the terminal
complement cascade. Nat Rev Endocrinol 2023;19(679-80). https://doi.org/
10.1038/541574-023-00900-w.

Kruglikov IL, Joffin N, Scherer PE. The MMP14-caveolin axis and its potential
relevance for lipoedema. Nat Rev Endocrinol 2020;16(669-74). https://doi.org/
10.1038/541574-020-0395-z.

Child AH, Gordon KD, Sharpe P, Brice G, Ostergaard P, Jeffery S, et al. Lipedema:
an inherited condition. Am J Med Genet A 2010;152A:970-6. https://doi.org/
10.1002/ajmg.a.33313.

Herbst KL. Rare adipose disorders (RADs) masquerading as obesity. Acta
Pharmacol Sin 2012;33(155-72). https://doi.org/10.1038/aps.2011.153.

Allen E, Hines E, Hines E. Lipedema of the legs: a syndrome characterized by fat
legs and orthostatic edema. Proc Staff Meet Mayo Clin 1940:184-7.

Koh SJ, Hyun YJ, Choi SY, Chae JS, Kim JY, Park S, et al. Influence of age and
visceral fat area on plasma adiponectin concentrations in women with normal
glucose tolerance. Clin Chim Acta 2008;389(45-50). https://doi.org/10.1016/j.
cca.2007.11.017.

Scherer PE. The multifaceted roles of adipose tissue—therapeutic targets for
diabetes and beyond: the 2015 banting lecture. Diabetes 2016;65(1452-61).
https://doi.org/10.2337/db16-0339.

Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gomez-Reino JJ, et al.
Leptin in the interplay of inflammation, metabolism and immune system disorders.
Nat Rev Rheumatol 2017;13(100-9). https://doi.org/10.1038/nrrheum.2016.209.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat Commun 2019;10. https://doi.org/10.1038/541467-019-09234-6.
Pan JB, Hu SC, Shi D, Cai MC, Li YB, Zou Q, et al. PaGenBase: a pattern gene
database for the global and dynamic understanding of gene function. PloS One
2013;8(e80747). https://doi.org/10.1371/journal.pone.0080747.

Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res
2014;43:D1049-56. https://doi.org/10.1093/nar/gkul179.

Consortium GO. The gene ontology resource: 20 years and still GOing strong.
Nucleic Acids Res 2019;47:D330-8. https://doi.org/10.1093/nar/gky1055.
Kanehisa MKEGG. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res
2000;28(27-30). https://doi.org/10.1093/nar/28.1.27.

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023;51:
D587-92. https://doi.org/10.1093/nar/gkac963.

Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, et al. TRRUST: a reference database
of human transcriptional regulatory interactions. Sci Rep 2015;5. https://doi.org/
10.1038/srep11432.

Allen M, Schwartz M, Herbst KL. Interstitial fluid in lipedema and control skin.
Women'’s. Health Rep 2020;1(480-7). https://doi.org/10.1089/whr.2020.0086.
Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Plasma
adiponectin levels in overweight and obese Asians. Obes Res 2002;10(1104-10).
https://doi.org/10.1038/0by.2002.150.

Goropashnaya AV, Herron J, Sexton M, Havel PJ, Stanhope KL, Plaetke R, et al.
Relationships between plasma adiponectin and body fat distribution, insulin
sensitivity, and plasma lipoproteins in Alaskan Yup’ik Eskimos: the Center for
Alaska Native Health Research study. Metabolism 2009;58(22-9). https://doi.org/
10.1016/j.metabol.2008.09.002.


https://doi.org/10.1016/j.metabol.2025.156191
https://doi.org/10.1016/j.metabol.2025.156191
https://doi.org/10.1177/02683555211015887
https://doi.org/10.7326/0003-4819-34-5-1243
https://doi.org/10.7326/0003-4819-34-5-1243
https://doi.org/10.1097/pr9.0000000000001155
https://doi.org/10.1097/pr9.0000000000001155
https://doi.org/10.3238/arztebl.2020.0396
https://doi.org/10.1111/j.1758-8111.2012.00045.x
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0030
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0030
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0035
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0035
https://doi.org/10.1055/a-0767-6808
https://doi.org/10.1097/Prs.0000000000008880
https://doi.org/10.1097/gox.0000000000003553
https://doi.org/10.3390/ijms23126621
https://doi.org/10.1177/1358863x231202769
https://doi.org/10.1177/1358863x231202769
https://doi.org/10.1038/s41574-023-00900-w
https://doi.org/10.1038/s41574-023-00900-w
https://doi.org/10.1038/s41574-020-0395-z
https://doi.org/10.1038/s41574-020-0395-z
https://doi.org/10.1002/ajmg.a.33313
https://doi.org/10.1002/ajmg.a.33313
https://doi.org/10.1038/aps.2011.153
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0085
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0085
https://doi.org/10.1016/j.cca.2007.11.017
https://doi.org/10.1016/j.cca.2007.11.017
https://doi.org/10.2337/db16-0339
https://doi.org/10.1038/nrrheum.2016.209
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1371/journal.pone.0080747
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1038/srep11432
https://doi.org/10.1038/srep11432
https://doi.org/10.1089/whr.2020.0086
https://doi.org/10.1038/oby.2002.150
https://doi.org/10.1016/j.metabol.2008.09.002
https://doi.org/10.1016/j.metabol.2008.09.002

L.G. Straub et al.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Summers SA, Chaurasia B, Holland WL. Metabolic messengers: ceramides. Nat
Metab 2019;1(1051-8). https://doi.org/10.1038/s42255-019-0134-8.

Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other
sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 2021;18
(701-11). https://doi.org/10.1038/541569-021-00536-1.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: machine learning in python. J Mach Learn Res 2011;12:2825-30.

Hao JG, Ho TK. Machine learning made easy: a review of Scikit-learn package in
python programming language. J Educ Behav Stat 2019;44(348-61). https://doi.
org/10.3102/1076998619832248.

Morgan S, Reid I, Bendon C, Ishaq M, Shayan R, Pope B, et al. A family-based study
of inherited genetic risk in lipedema. Lymphat Res Biol 2024;22(106-11). https://
doi.org/10.1089/1rb.2023.0065.

Kempa S, Buechler C, Foh B, Felthaus O, Prantl L, Giinther UL, et al. Serum
metabolomic profiling of patients with lipedema. Int J Mol Sci 2023;24. https://
doi.org/10.3390/ijms242417437.

Park DJ, Park MW, Lee H, Kim Y-J, Kim Y, Park YH. Development of machine
learning model for diagnostic disease prediction based on laboratory tests. Sci Rep
2021;11. https://doi.org/10.1038/541598-021-87171-5.

Kruppa P, Gohlke S, Lapinski K, Garcia-Carrizo F, Soultoukis GA, Infanger M, et al.
Lipedema stage affects adipocyte hypertrophy, subcutaneous adipose tissue
inflammation and interstitial fibrosis. Front Immunol 2023;14. https://doi.org/
10.3389/fimmu.2023.1223264.

Ishaq M, Bandara N, Morgan S, Nowell C, Mehdi AM, Lyu R, et al. Key signaling
networks are dysregulated in patients with the adipose tissue disorder, lipedema.
Int J Obes (Lond) 2021;46(502-14). https://doi.org/10.1038/541366-021-01002-
1.

Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab 2019;
1(754-64). https://doi.org/10.1038/542255-019-0095-y.

Straub LG, Scherer PE. Metabolic messengers: adiponectin. Nat Metab 2019;1
(334-9). https://doi.org/10.1038/542255-019-0041-z.

Castela I, Morais J, Barreiros-Mota I, Silvestre MP, Marques C, Rodrigues C, et al.
Decreased adiponectin/leptin ratio relates to insulin resistance in adults with
obesity. Am J Physiol Endocrinol Metab 2023;324:E115-9. https://doi.org/
10.1152/ajpendo.00273.2022.

Nankam PAN, Cornely M, Kloting N, Bluher M. Is subcutaneous adipose tissue
expansion in people living with lipedema healthier and reflected by circulating
parameters? Front Endocrinol (Lausanne) 2022;13:1000094. https://doi.org/
10.3389/fendo.2022.1000094.

Holland WL, Scherer PE. PAQRs: a counteracting force to ceramides? Mol
Pharmacol 2009;75(740-3). https://doi.org/10.1124/mol.109.054817.
Vasiliauskaité-Brooks I, Sounier R, Rochaix P, Bellot G, Fortier M, Hoh F, et al.
Structural insights into adiponectin receptors suggest ceramidase activity. Nature
2017;544(120-3). https://doi.org/10.1038/nature21714.

Zhu Q, Chen S, Funcke J-B, Straub LG, Lin Q, Zhao S, et al. PAQR4 regulates
adipocyte function and systemic metabolic health by mediating ceramide levels.
Nat Metab 2024;6(1347-66). https://doi.org/10.1038/542255-024-01078-9.
Lopez X, Goldfine AB, Holland WL, Gordillo R, Scherer PE. Plasma ceramides are
elevated in female children and adolescents with type 2 diabetes. J Pediatr
Endocrinol Metab 2013;26. https://doi.org/10.1515/jpem-2012-0407.
Blachnio-Zabielska AU, Koutsari C, Tchkonia T, Jensen MD. Sphingolipid content
of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity
2012;20(2341-7). https://doi.org/10.1038/0by.2012.126.

Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature
2014;510(58-67). https://doi.org/10.1038/naturel3475.

Pushkareva M, Obeid LM, Hannun YA. Ceramide: an endogenous regulator of
apoptosis and growth suppression. Immunol Today 1995;16(294-7). https://doi.
0rg/10.1016/0167-5699(95)80184-7.

Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al.
Fingolimod (FTY720): discovery and development of an oral drug to treat multiple
sclerosis. Nat Rev Drug Discov 2010;9(883-97). https://doi.org/10.1038/
nrd3248.

Mobarak E, Haversen L, Manna M, Rutberg M, Levin M, Perkins R, et al.
Glucosylceramide modifies the LPS-induced inflammatory response in
macrophages and the orientation of the LPS/TLR4 complex in silico. Sci Rep 2018;
8. https://doi.org/10.1038/541598-018-31926-0.

Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in
neuroinflammatory disease. J Neurochem 2007;103(Suppl. 1):180-91. https://doi.
org/10.1111/j.1471-4159.2007.04822.x.

Kruglikov IL, Scherer PE. Is the endotoxin—complement cascade the major driver in
lipedema? Trends Endocrinol Metab 2024. https://doi.org/10.1016/j.
tem.2024.04.004.

17

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Metabolism 168 (2025) 156191

Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase
activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis
factor-alpha. J Clin Investig 1994;94(1543-9). https://doi.org/10.1172/
jcil17495.

Distler JHW, Gyorfi AH, Ramanujam M, Whitfield ML, Konigshoff M, Lafyatis R.
Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019;15(705-30).
https://doi.org/10.1038/s41584-019-0322-7.

Streubel MK, Baumgartner A, Meier-Vollrath I, Frambach Y, Brandenburger M,
Kisch T. Transcriptomics of subcutaneous tissue of lipedema identified
differentially expressed genes involved in adipogenesis, inflammation, and pain.
Plast Reconstr Surg Global Open 2024;12. https://doi.org/10.1097/
g0x.0000000000006288.

Cifarelli V, Smith GI, Gonzalez-Nieves S, Samovski D, Palacios HH, Yoshino J, et al.
Adipose tissue biology and effect of weight loss in women with lipedema. Diabetes
2024. https://doi.org/10.2337/db24-0890.

Vasella M, Wolf S, Francis EC, Grieb G, Pfister P, Reid G, et al. Involvement of the
macrophage migration inhibitory factor (MIF) in lipedema. Metabolites 2023;13.
https://doi.org/10.3390/metabo13101105.

Wolf S, Rannikko JH, Virtakoivu R, Cinelli P, Felmerer G, Burger A, et al. A distinct
M2 macrophage infiltrate and transcriptomic profile decisively influence adipocyte
differentiation in lipedema. Front Immunol 2022;13:1004609. https://doi.org/
10.3389/fimmu.2022.1004609.

Felmerer G, Stylianaki A, Hégerling R, Wang A, Strébel P, Hollmén M, et al.
Adipose tissue hypertrophy, an aberrant biochemical profile and distinct gene
expression in lipedema. J Surg Res 2020;253(294-303). https://doi.org/10.1016/
j.j$5.2020.03.055.

Al-Ghadban S, Cromer W, Allen M, Ussery C, Badowski M, Harris D, et al. Dilated
blood and lymphatic microvessels, angiogenesis, increased macrophages, and
adipocyte hypertrophy in lipedema thigh skin and fat tissue. J Obes 2019;2019
(1-10). https://doi.org/10.1155/2019/8747461.

Esmon CT. Interactions between the innate immune and blood coagulation
systems. Trends Immunol 2004;25(536-42). https://doi.org/10.1016/j.
it.2004.08.003.

Weidmann H, Heikaus L, Long AT, Naudin C, Schliiter H, Renné T. The plasma
contact system, a protease cascade at the nexus of inflammation, coagulation and
immunity. Biochim Biophys Acta (BBA) Mol Cell Res 2017;1864(2118-27).
https://doi.org/10.1016/j.bbamcr.2017.07.009.

Kruglikov IL, Scherer PE. Is the endotoxin-complement cascade the major driver in
lipedema? Trends Endocrinol Metab 2024;35(769-80). https://doi.org/10.1016/j.
tem.2024.04.004.

Kruglikov IL, Scherer PE. Pathophysiology of cellulite: possible involvement of
selective endotoxemia. Obes Rev 2022;24. https://doi.org/10.1111/0br.13517.
Camara NOS, Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, et al. CD4+
cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis.
PloS One 2012;7. https://doi.org/10.1371/journal.pone.0049940.

Alim MA, Grujic M, Ackerman PW, Kristiansson P, Eliasson P, Peterson M, et al.
Glutamate triggers the expression of functional ionotropic and metabotropic
glutamate receptors in mast cells. Cell Mol Immunol 2020;18(2383-92). https://
doi.org/10.1038/541423-020-0421-z.

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine:
metabolism and immune function, supplementation and clinical translation.
Nutrients 2018;10. https://doi.org/10.3390/nul0111564.

Wernerman J. Clinical use of glutamine supplementation. J Nutr 2008;138:
2040S-20404S. https://doi.org/10.1093/jn/138.10.2040S.

Fiirst P, Alteheld B, Stehle P. Why should a single nutrient—glutamine—improve
outcome? Clin Nutr Suppl 2004;1(3-15). https://doi.org/10.1016/j.
clnu.2004.07.006.

Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, et al. Characterization of
the CLASP2 protein interaction network identifies SOGA1 as a microtubule-
associated protein. Mol Cell Proteomics 2017;16(1718-35). https://doi.org/
10.1074/mcp.RA117.000011.

Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, et al. Insulin induces
microtubule stabilization and regulates the microtubule plus-end tracking protein
network in adipocytes. Mol Cell Proteomics 2019;18(1363-81). https://doi.org/
10.1074/mcp.RA119.001450.

Uhlorn JA, Husband NA, Romero-Aleshire MJ, Moffett C, Lindsey ML, Langlais PR,
et al. CD4(+) T cell-specific proteomic pathways identified in progression of
hypertension across postmenopausal transition. J Am Heart Assoc 2021;10
(e018038). https://doi.org/10.1161/JAHA.120.018038.

Tyanova S, Cox J. Perseus: a bioinformatics platform for integrative analysis of
proteomics data in cancer research. Methods Mol Biol 2018;1711(133-48).
https://doi.org/10.1007/978-1-4939-7493-1_7.


https://doi.org/10.1038/s42255-019-0134-8
https://doi.org/10.1038/s41569-021-00536-1
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0165
http://refhub.elsevier.com/S0026-0495(25)00060-5/rf0165
https://doi.org/10.3102/1076998619832248
https://doi.org/10.3102/1076998619832248
https://doi.org/10.1089/lrb.2023.0065
https://doi.org/10.1089/lrb.2023.0065
https://doi.org/10.3390/ijms242417437
https://doi.org/10.3390/ijms242417437
https://doi.org/10.1038/s41598-021-87171-5
https://doi.org/10.3389/fimmu.2023.1223264
https://doi.org/10.3389/fimmu.2023.1223264
https://doi.org/10.1038/s41366-021-01002-1
https://doi.org/10.1038/s41366-021-01002-1
https://doi.org/10.1038/s42255-019-0095-y
https://doi.org/10.1038/s42255-019-0041-z
https://doi.org/10.1152/ajpendo.00273.2022
https://doi.org/10.1152/ajpendo.00273.2022
https://doi.org/10.3389/fendo.2022.1000094
https://doi.org/10.3389/fendo.2022.1000094
https://doi.org/10.1124/mol.109.054817
https://doi.org/10.1038/nature21714
https://doi.org/10.1038/s42255-024-01078-9
https://doi.org/10.1515/jpem-2012-0407
https://doi.org/10.1038/oby.2012.126
https://doi.org/10.1038/nature13475
https://doi.org/10.1016/0167-5699(95)80184-7
https://doi.org/10.1016/0167-5699(95)80184-7
https://doi.org/10.1038/nrd3248
https://doi.org/10.1038/nrd3248
https://doi.org/10.1038/s41598-018-31926-0
https://doi.org/10.1111/j.1471-4159.2007.04822.x
https://doi.org/10.1111/j.1471-4159.2007.04822.x
https://doi.org/10.1016/j.tem.2024.04.004
https://doi.org/10.1016/j.tem.2024.04.004
https://doi.org/10.1172/jci117495
https://doi.org/10.1172/jci117495
https://doi.org/10.1038/s41584-019-0322-7
https://doi.org/10.1097/gox.0000000000006288
https://doi.org/10.1097/gox.0000000000006288
https://doi.org/10.2337/db24-0890
https://doi.org/10.3390/metabo13101105
https://doi.org/10.3389/fimmu.2022.1004609
https://doi.org/10.3389/fimmu.2022.1004609
https://doi.org/10.1016/j.jss.2020.03.055
https://doi.org/10.1016/j.jss.2020.03.055
https://doi.org/10.1155/2019/8747461
https://doi.org/10.1016/j.it.2004.08.003
https://doi.org/10.1016/j.it.2004.08.003
https://doi.org/10.1016/j.bbamcr.2017.07.009
https://doi.org/10.1016/j.tem.2024.04.004
https://doi.org/10.1016/j.tem.2024.04.004
https://doi.org/10.1111/obr.13517
https://doi.org/10.1371/journal.pone.0049940
https://doi.org/10.1038/s41423-020-0421-z
https://doi.org/10.1038/s41423-020-0421-z
https://doi.org/10.3390/nu10111564
https://doi.org/10.1093/jn/138.10.2040S
https://doi.org/10.1016/j.clnu.2004.07.006
https://doi.org/10.1016/j.clnu.2004.07.006
https://doi.org/10.1074/mcp.RA117.000011
https://doi.org/10.1074/mcp.RA117.000011
https://doi.org/10.1074/mcp.RA119.001450
https://doi.org/10.1074/mcp.RA119.001450
https://doi.org/10.1161/JAHA.120.018038
https://doi.org/10.1007/978-1-4939-7493-1_7

	Defining lipedema's molecular hallmarks by multi-omics approach for disease prediction in women
	1 Introduction
	2 Results
	2.1 Early lipedema is characterized by disrupted correlations between circulating adipokine levels and BMI
	2.2 The lipedema adipose tissue transcriptome exhibits patterns of increased oxidative phosphorylation and decreased leukoc ...
	2.3 The lipedema adipose tissue proteome validates transcriptomic findings and furthermore suggests local dysfunctions in c ...
	2.4 Lipedema serum measurements indicate mostly unchanged systemic cytokine and chemokine levels, but a trend towards incre ...
	2.5 Differences in ceramide and sphingolipid metabolism are sufficient to develop accurate serum-based lipedema prediction  ...

	3 Discussion
	3.1 Limitations of the study

	4 Methods
	4.1 Participants
	4.1.1 Inclusion criteria
	4.1.2 Exclusion criteria

	4.2 Biopsies
	4.3 RNA sequencing analysis
	4.4 Metabolomics (sphingolipids, free amino acids, and sulfatides)
	4.4.1 Sphingolipids were extracted from serum samples as follows
	4.4.2 Free amino acids were extracted from serum as follows
	4.4.3 Sulfatides were extracted and purified from serum samples as follows

	4.5 Proteomics
	4.5.1 Adipose tissue homogenization
	4.5.2 In-gel digestion
	4.5.3 Mass spectrometry and database search
	4.5.4 Label-free quantitative proteomics

	4.6 Serum analysis
	4.7 Abbreviations
	4.8 Statistical analysis
	4.9 Machine learning

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


